Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176366951> ?p ?o ?g. }
- W3176366951 abstract "Machine learning models are a powerful theoretical tool for analyzing data from quantum simulators, in which results of experiments are sets of snapshots of many-body states. Recently, they have been successfully applied to distinguish between snapshots that can not be identified using traditional one and two point correlation functions. Thus far, the complexity of these models has inhibited new physical insights from this approach. Here, using a novel set of nonlinearities we develop a network architecture that discovers features in the data which are directly interpretable in terms of physical observables. In particular, our network can be understood as uncovering high-order correlators which significantly differ between the data studied. We demonstrate this new architecture on sets of simulated snapshots produced by two candidate theories approximating the doped Fermi-Hubbard model, which is realized in state-of-the art quantum gas microscopy experiments. From the trained networks, we uncover that the key distinguishing features are fourth-order spin-charge correlators, providing a means to compare experimental data to theoretical predictions. Our approach lends itself well to the construction of simple, end-to-end interpretable architectures and is applicable to arbitrary lattice data, thus paving the way for new physical insights from machine learning studies of experimental as well as numerical data." @default.
- W3176366951 created "2021-07-05" @default.
- W3176366951 creator A5006380227 @default.
- W3176366951 creator A5010106543 @default.
- W3176366951 creator A5015396969 @default.
- W3176366951 creator A5022195109 @default.
- W3176366951 creator A5027431609 @default.
- W3176366951 creator A5030055785 @default.
- W3176366951 creator A5048611499 @default.
- W3176366951 creator A5055905167 @default.
- W3176366951 creator A5059690645 @default.
- W3176366951 creator A5089520426 @default.
- W3176366951 date "2021-06-23" @default.
- W3176366951 modified "2023-10-17" @default.
- W3176366951 title "Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data" @default.
- W3176366951 cites W1488655027 @default.
- W3176366951 cites W1967205858 @default.
- W3176366951 cites W1989709650 @default.
- W3176366951 cites W2010469581 @default.
- W3176366951 cites W2026442798 @default.
- W3176366951 cites W2119862467 @default.
- W3176366951 cites W2415554263 @default.
- W3176366951 cites W2595937684 @default.
- W3176366951 cites W2615003501 @default.
- W3176366951 cites W2618411197 @default.
- W3176366951 cites W2735457220 @default.
- W3176366951 cites W2750673150 @default.
- W3176366951 cites W2788712136 @default.
- W3176366951 cites W2792505362 @default.
- W3176366951 cites W2798368581 @default.
- W3176366951 cites W2819059150 @default.
- W3176366951 cites W2896817368 @default.
- W3176366951 cites W2907583793 @default.
- W3176366951 cites W2952203743 @default.
- W3176366951 cites W3006267980 @default.
- W3176366951 cites W3009375730 @default.
- W3176366951 cites W3010253438 @default.
- W3176366951 cites W3013043663 @default.
- W3176366951 cites W3047481224 @default.
- W3176366951 cites W3098847359 @default.
- W3176366951 cites W3100886856 @default.
- W3176366951 cites W3101352999 @default.
- W3176366951 cites W3101814149 @default.
- W3176366951 cites W3101949649 @default.
- W3176366951 cites W3106082270 @default.
- W3176366951 cites W3112918128 @default.
- W3176366951 cites W3182444457 @default.
- W3176366951 cites W3200610361 @default.
- W3176366951 doi "https://doi.org/10.1038/s41467-021-23952-w" @default.
- W3176366951 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8222395" @default.
- W3176366951 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34162847" @default.
- W3176366951 hasPublicationYear "2021" @default.
- W3176366951 type Work @default.
- W3176366951 sameAs 3176366951 @default.
- W3176366951 citedByCount "19" @default.
- W3176366951 countsByYear W31763669512021 @default.
- W3176366951 countsByYear W31763669512022 @default.
- W3176366951 countsByYear W31763669512023 @default.
- W3176366951 crossrefType "journal-article" @default.
- W3176366951 hasAuthorship W3176366951A5006380227 @default.
- W3176366951 hasAuthorship W3176366951A5010106543 @default.
- W3176366951 hasAuthorship W3176366951A5015396969 @default.
- W3176366951 hasAuthorship W3176366951A5022195109 @default.
- W3176366951 hasAuthorship W3176366951A5027431609 @default.
- W3176366951 hasAuthorship W3176366951A5030055785 @default.
- W3176366951 hasAuthorship W3176366951A5048611499 @default.
- W3176366951 hasAuthorship W3176366951A5055905167 @default.
- W3176366951 hasAuthorship W3176366951A5059690645 @default.
- W3176366951 hasAuthorship W3176366951A5089520426 @default.
- W3176366951 hasBestOaLocation W31763669511 @default.
- W3176366951 hasConcept C105795698 @default.
- W3176366951 hasConcept C119857082 @default.
- W3176366951 hasConcept C121332964 @default.
- W3176366951 hasConcept C123657996 @default.
- W3176366951 hasConcept C142362112 @default.
- W3176366951 hasConcept C153349607 @default.
- W3176366951 hasConcept C154945302 @default.
- W3176366951 hasConcept C177264268 @default.
- W3176366951 hasConcept C199360897 @default.
- W3176366951 hasConcept C32848918 @default.
- W3176366951 hasConcept C33923547 @default.
- W3176366951 hasConcept C41008148 @default.
- W3176366951 hasConcept C50644808 @default.
- W3176366951 hasConcept C55037315 @default.
- W3176366951 hasConcept C62520636 @default.
- W3176366951 hasConcept C80444323 @default.
- W3176366951 hasConcept C81363708 @default.
- W3176366951 hasConcept C84114770 @default.
- W3176366951 hasConceptScore W3176366951C105795698 @default.
- W3176366951 hasConceptScore W3176366951C119857082 @default.
- W3176366951 hasConceptScore W3176366951C121332964 @default.
- W3176366951 hasConceptScore W3176366951C123657996 @default.
- W3176366951 hasConceptScore W3176366951C142362112 @default.
- W3176366951 hasConceptScore W3176366951C153349607 @default.
- W3176366951 hasConceptScore W3176366951C154945302 @default.
- W3176366951 hasConceptScore W3176366951C177264268 @default.
- W3176366951 hasConceptScore W3176366951C199360897 @default.
- W3176366951 hasConceptScore W3176366951C32848918 @default.
- W3176366951 hasConceptScore W3176366951C33923547 @default.
- W3176366951 hasConceptScore W3176366951C41008148 @default.