Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176406253> ?p ?o ?g. }
- W3176406253 abstract "Abstract Recent work has demonstrated the potential of convolutional neural networks (CNNs) in producing low-computational cost surrogate models for the localization of mechanical fields in two-phase microstructures. The extension of the same CNNs to polycrystalline microstructures is hindered by the lack of an efficient formalism for the representation of the crystal lattice orientation in the input channels of the CNNs. In this paper, we demonstrate the benefits of using generalized spherical harmonics (GSH) for addressing this challenge. A CNN model was successfully trained to predict the local plastic velocity gradient fields in polycrystalline microstructures subjected to a macroscopically imposed loading condition. Specifically, it is demonstrated that the proposed approach improves significantly the accuracy of the CNN models when compared with the direct use of Bunge–Euler angles to represent the crystal orientations in the input channels. Since the proposed approach implicitly satisfies the expected crystal symmetries in the specification of the input microstructure to the CNN, it opens new research directions for the adoption of CNNs in addressing a broad range of polycrystalline microstructure design and optimization problems." @default.
- W3176406253 created "2021-07-05" @default.
- W3176406253 creator A5031352848 @default.
- W3176406253 creator A5049071419 @default.
- W3176406253 creator A5088816007 @default.
- W3176406253 date "2021-05-28" @default.
- W3176406253 modified "2023-09-26" @default.
- W3176406253 title "Convolutional Neural Networks for the Localization of Plastic Velocity Gradient Tensor in Polycrystalline Microstructures" @default.
- W3176406253 cites W1964692066 @default.
- W3176406253 cites W1966090781 @default.
- W3176406253 cites W1967243369 @default.
- W3176406253 cites W1973042423 @default.
- W3176406253 cites W1985760524 @default.
- W3176406253 cites W1990673485 @default.
- W3176406253 cites W1997344774 @default.
- W3176406253 cites W1998169744 @default.
- W3176406253 cites W1998453954 @default.
- W3176406253 cites W2002573693 @default.
- W3176406253 cites W2011163643 @default.
- W3176406253 cites W2016463190 @default.
- W3176406253 cites W2020609646 @default.
- W3176406253 cites W2031286654 @default.
- W3176406253 cites W2037352004 @default.
- W3176406253 cites W2042071294 @default.
- W3176406253 cites W2046159077 @default.
- W3176406253 cites W2046660839 @default.
- W3176406253 cites W2051609521 @default.
- W3176406253 cites W2058867380 @default.
- W3176406253 cites W2061232593 @default.
- W3176406253 cites W2075072663 @default.
- W3176406253 cites W2082666553 @default.
- W3176406253 cites W2087031190 @default.
- W3176406253 cites W2087354680 @default.
- W3176406253 cites W2089520483 @default.
- W3176406253 cites W2093250899 @default.
- W3176406253 cites W2156007048 @default.
- W3176406253 cites W2158778629 @default.
- W3176406253 cites W2323198416 @default.
- W3176406253 cites W2593592895 @default.
- W3176406253 cites W2742180631 @default.
- W3176406253 cites W2755762223 @default.
- W3176406253 cites W2777965033 @default.
- W3176406253 cites W2790729248 @default.
- W3176406253 cites W2803170602 @default.
- W3176406253 cites W2896057896 @default.
- W3176406253 cites W2907366958 @default.
- W3176406253 cites W2919115771 @default.
- W3176406253 cites W2944192730 @default.
- W3176406253 cites W2944778514 @default.
- W3176406253 cites W2962940229 @default.
- W3176406253 cites W2963881378 @default.
- W3176406253 cites W2964837889 @default.
- W3176406253 cites W2967459141 @default.
- W3176406253 cites W2984302120 @default.
- W3176406253 cites W3016482395 @default.
- W3176406253 cites W3100321043 @default.
- W3176406253 cites W3125985274 @default.
- W3176406253 cites W4211090081 @default.
- W3176406253 cites W4232280717 @default.
- W3176406253 cites W646002149 @default.
- W3176406253 doi "https://doi.org/10.1115/1.4051085" @default.
- W3176406253 hasPublicationYear "2021" @default.
- W3176406253 type Work @default.
- W3176406253 sameAs 3176406253 @default.
- W3176406253 citedByCount "2" @default.
- W3176406253 countsByYear W31764062532022 @default.
- W3176406253 countsByYear W31764062532023 @default.
- W3176406253 crossrefType "journal-article" @default.
- W3176406253 hasAuthorship W3176406253A5031352848 @default.
- W3176406253 hasAuthorship W3176406253A5049071419 @default.
- W3176406253 hasAuthorship W3176406253A5088816007 @default.
- W3176406253 hasConcept C137637335 @default.
- W3176406253 hasConcept C146160929 @default.
- W3176406253 hasConcept C154945302 @default.
- W3176406253 hasConcept C155281189 @default.
- W3176406253 hasConcept C159985019 @default.
- W3176406253 hasConcept C191897082 @default.
- W3176406253 hasConcept C192562407 @default.
- W3176406253 hasConcept C2524010 @default.
- W3176406253 hasConcept C33923547 @default.
- W3176406253 hasConcept C41008148 @default.
- W3176406253 hasConcept C81363708 @default.
- W3176406253 hasConcept C87976508 @default.
- W3176406253 hasConceptScore W3176406253C137637335 @default.
- W3176406253 hasConceptScore W3176406253C146160929 @default.
- W3176406253 hasConceptScore W3176406253C154945302 @default.
- W3176406253 hasConceptScore W3176406253C155281189 @default.
- W3176406253 hasConceptScore W3176406253C159985019 @default.
- W3176406253 hasConceptScore W3176406253C191897082 @default.
- W3176406253 hasConceptScore W3176406253C192562407 @default.
- W3176406253 hasConceptScore W3176406253C2524010 @default.
- W3176406253 hasConceptScore W3176406253C33923547 @default.
- W3176406253 hasConceptScore W3176406253C41008148 @default.
- W3176406253 hasConceptScore W3176406253C81363708 @default.
- W3176406253 hasConceptScore W3176406253C87976508 @default.
- W3176406253 hasIssue "1" @default.
- W3176406253 hasLocation W31764062531 @default.
- W3176406253 hasOpenAccess W3176406253 @default.
- W3176406253 hasPrimaryLocation W31764062531 @default.
- W3176406253 hasRelatedWork W1972254111 @default.