Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176455725> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3176455725 abstract "This paper introduces an effective Network Intrusion Detection Systems (NIDS) framework that deploys incremental statistical damping features of the packets along with state-of- the-art machine/deep learning algorithms to detect malicious patterns. A comprehensive evaluation study is conducted between eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN) where feature selection and/or feature dimensionality reduction techniques such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are also integrated into the models to decrease the system complexity for achieving fast responses. Several experimental runs confirm how powerful machine/deep learning algorithms are for intrusion detection on known attacks when combined with the appropriate features extracted. To investigate unknown attacks, the models were trained on a subset of the attack datasets, while a different set (with a different attack type) was kept aside for testing. The decent results achieved further support the belief that through supervised learning, the model could additionally detect unknown attacks." @default.
- W3176455725 created "2021-07-05" @default.
- W3176455725 creator A5005671434 @default.
- W3176455725 creator A5031601451 @default.
- W3176455725 creator A5045161880 @default.
- W3176455725 date "2020-12-01" @default.
- W3176455725 modified "2023-10-16" @default.
- W3176455725 title "Network Intrusion Detection with XGBoost and Deep Learning Algorithms: An Evaluation Study" @default.
- W3176455725 cites W1999785771 @default.
- W3176455725 cites W2121812409 @default.
- W3176455725 cites W2142889610 @default.
- W3176455725 cites W2157196931 @default.
- W3176455725 cites W2424926039 @default.
- W3176455725 cites W2789828921 @default.
- W3176455725 cites W2899653275 @default.
- W3176455725 cites W2900678839 @default.
- W3176455725 cites W2921708219 @default.
- W3176455725 cites W2963197901 @default.
- W3176455725 cites W2989622188 @default.
- W3176455725 cites W3004716932 @default.
- W3176455725 cites W3102476541 @default.
- W3176455725 doi "https://doi.org/10.1109/csci51800.2020.00031" @default.
- W3176455725 hasPublicationYear "2020" @default.
- W3176455725 type Work @default.
- W3176455725 sameAs 3176455725 @default.
- W3176455725 citedByCount "2" @default.
- W3176455725 countsByYear W31764557252021 @default.
- W3176455725 countsByYear W31764557252022 @default.
- W3176455725 crossrefType "proceedings-article" @default.
- W3176455725 hasAuthorship W3176455725A5005671434 @default.
- W3176455725 hasAuthorship W3176455725A5031601451 @default.
- W3176455725 hasAuthorship W3176455725A5045161880 @default.
- W3176455725 hasConcept C108583219 @default.
- W3176455725 hasConcept C110083411 @default.
- W3176455725 hasConcept C11413529 @default.
- W3176455725 hasConcept C119857082 @default.
- W3176455725 hasConcept C12267149 @default.
- W3176455725 hasConcept C148483581 @default.
- W3176455725 hasConcept C153180895 @default.
- W3176455725 hasConcept C154945302 @default.
- W3176455725 hasConcept C27438332 @default.
- W3176455725 hasConcept C35525427 @default.
- W3176455725 hasConcept C41008148 @default.
- W3176455725 hasConcept C46686674 @default.
- W3176455725 hasConcept C50644808 @default.
- W3176455725 hasConcept C52622490 @default.
- W3176455725 hasConcept C69738355 @default.
- W3176455725 hasConcept C70518039 @default.
- W3176455725 hasConceptScore W3176455725C108583219 @default.
- W3176455725 hasConceptScore W3176455725C110083411 @default.
- W3176455725 hasConceptScore W3176455725C11413529 @default.
- W3176455725 hasConceptScore W3176455725C119857082 @default.
- W3176455725 hasConceptScore W3176455725C12267149 @default.
- W3176455725 hasConceptScore W3176455725C148483581 @default.
- W3176455725 hasConceptScore W3176455725C153180895 @default.
- W3176455725 hasConceptScore W3176455725C154945302 @default.
- W3176455725 hasConceptScore W3176455725C27438332 @default.
- W3176455725 hasConceptScore W3176455725C35525427 @default.
- W3176455725 hasConceptScore W3176455725C41008148 @default.
- W3176455725 hasConceptScore W3176455725C46686674 @default.
- W3176455725 hasConceptScore W3176455725C50644808 @default.
- W3176455725 hasConceptScore W3176455725C52622490 @default.
- W3176455725 hasConceptScore W3176455725C69738355 @default.
- W3176455725 hasConceptScore W3176455725C70518039 @default.
- W3176455725 hasLocation W31764557251 @default.
- W3176455725 hasOpenAccess W3176455725 @default.
- W3176455725 hasPrimaryLocation W31764557251 @default.
- W3176455725 hasRelatedWork W1623999640 @default.
- W3176455725 hasRelatedWork W1677378707 @default.
- W3176455725 hasRelatedWork W1756315871 @default.
- W3176455725 hasRelatedWork W2037772955 @default.
- W3176455725 hasRelatedWork W2123759770 @default.
- W3176455725 hasRelatedWork W2130958339 @default.
- W3176455725 hasRelatedWork W2150085486 @default.
- W3176455725 hasRelatedWork W2157903613 @default.
- W3176455725 hasRelatedWork W2296543338 @default.
- W3176455725 hasRelatedWork W2347213675 @default.
- W3176455725 isParatext "false" @default.
- W3176455725 isRetracted "false" @default.
- W3176455725 magId "3176455725" @default.
- W3176455725 workType "article" @default.