Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176466636> ?p ?o ?g. }
- W3176466636 endingPage "101315" @default.
- W3176466636 startingPage "101315" @default.
- W3176466636 abstract "The quality of fault recognition part is one of the key factors affecting the efficiency of intelligent manufacturing. Many excellent achievements in deep learning (DL) have been realized recently as methods of fault recognition. However, DL models have inherent shortcomings. In particular, the phenomenon of over-fitting or degradation suggests that such an intelligent algorithm cannot fully use its feature perception ability. Researchers have mainly adapted the network architecture for fault diagnosis, but the above limitations are not taken into account. In this study, we propose a novel deep reinforcement learning method that combines the perception of DL with the decision-making ability of reinforcement learning. This method enhances the classification accuracy of the DL module to autonomously learn much more knowledge hidden in raw data. The proposed method based on the convolutional neural network (CNN) also adopts an improved actor-critic algorithm for fault recognition. The important parts in standard actor-critic algorithm, such as environment, neural network, reward, and loss functions, have been fully considered in improved actor-critic algorithm. Additionally, to fully distinguish compound faults under heavy background noise, multi-channel signals are first stacked synchronously and then input into the model in the end-to-end training mode. The diagnostic results on the compound fault of the bearing and tool in the machine tool experimental system show that compared with other methods, the proposed network structure has more accurate results. These findings demonstrate that under the guidance of the improved actor-critic algorithm and processing method for multi-channel data, the proposed method thus has stronger exploration performance." @default.
- W3176466636 created "2021-07-05" @default.
- W3176466636 creator A5020225736 @default.
- W3176466636 creator A5048701151 @default.
- W3176466636 date "2021-08-01" @default.
- W3176466636 modified "2023-10-04" @default.
- W3176466636 title "Intelligent fault recognition framework by using deep reinforcement learning with one dimension convolution and improved actor-critic algorithm" @default.
- W3176466636 cites W2024591926 @default.
- W3176466636 cites W2041727086 @default.
- W3176466636 cites W2046376809 @default.
- W3176466636 cites W2076063813 @default.
- W3176466636 cites W2145339207 @default.
- W3176466636 cites W2154997814 @default.
- W3176466636 cites W2195063230 @default.
- W3176466636 cites W2219903032 @default.
- W3176466636 cites W2251652412 @default.
- W3176466636 cites W2280977705 @default.
- W3176466636 cites W2418033038 @default.
- W3176466636 cites W2524771588 @default.
- W3176466636 cites W2529823305 @default.
- W3176466636 cites W2530662737 @default.
- W3176466636 cites W2531781944 @default.
- W3176466636 cites W2549489119 @default.
- W3176466636 cites W2564938190 @default.
- W3176466636 cites W2580133360 @default.
- W3176466636 cites W2581882065 @default.
- W3176466636 cites W2593479727 @default.
- W3176466636 cites W2601590138 @default.
- W3176466636 cites W2767031373 @default.
- W3176466636 cites W2780382639 @default.
- W3176466636 cites W2786230833 @default.
- W3176466636 cites W2789963629 @default.
- W3176466636 cites W2794760173 @default.
- W3176466636 cites W2796202072 @default.
- W3176466636 cites W2797427442 @default.
- W3176466636 cites W2804096023 @default.
- W3176466636 cites W2810292802 @default.
- W3176466636 cites W2810788354 @default.
- W3176466636 cites W2883139641 @default.
- W3176466636 cites W2887782657 @default.
- W3176466636 cites W2889649225 @default.
- W3176466636 cites W2891989921 @default.
- W3176466636 cites W2898760173 @default.
- W3176466636 cites W2906256948 @default.
- W3176466636 cites W2907007702 @default.
- W3176466636 cites W2919115771 @default.
- W3176466636 cites W2931331224 @default.
- W3176466636 cites W2938161931 @default.
- W3176466636 cites W2941435312 @default.
- W3176466636 cites W2959334635 @default.
- W3176466636 cites W2963856199 @default.
- W3176466636 cites W2969747056 @default.
- W3176466636 cites W2979796207 @default.
- W3176466636 cites W3004106166 @default.
- W3176466636 cites W3047598527 @default.
- W3176466636 cites W3104595455 @default.
- W3176466636 doi "https://doi.org/10.1016/j.aei.2021.101315" @default.
- W3176466636 hasPublicationYear "2021" @default.
- W3176466636 type Work @default.
- W3176466636 sameAs 3176466636 @default.
- W3176466636 citedByCount "24" @default.
- W3176466636 countsByYear W31764666362022 @default.
- W3176466636 countsByYear W31764666362023 @default.
- W3176466636 crossrefType "journal-article" @default.
- W3176466636 hasAuthorship W3176466636A5020225736 @default.
- W3176466636 hasAuthorship W3176466636A5048701151 @default.
- W3176466636 hasConcept C108583219 @default.
- W3176466636 hasConcept C11413529 @default.
- W3176466636 hasConcept C115961682 @default.
- W3176466636 hasConcept C119857082 @default.
- W3176466636 hasConcept C127313418 @default.
- W3176466636 hasConcept C138885662 @default.
- W3176466636 hasConcept C153180895 @default.
- W3176466636 hasConcept C154945302 @default.
- W3176466636 hasConcept C165205528 @default.
- W3176466636 hasConcept C175551986 @default.
- W3176466636 hasConcept C202444582 @default.
- W3176466636 hasConcept C2776401178 @default.
- W3176466636 hasConcept C33676613 @default.
- W3176466636 hasConcept C33923547 @default.
- W3176466636 hasConcept C41008148 @default.
- W3176466636 hasConcept C41895202 @default.
- W3176466636 hasConcept C45347329 @default.
- W3176466636 hasConcept C50644808 @default.
- W3176466636 hasConcept C81363708 @default.
- W3176466636 hasConcept C97541855 @default.
- W3176466636 hasConcept C99498987 @default.
- W3176466636 hasConceptScore W3176466636C108583219 @default.
- W3176466636 hasConceptScore W3176466636C11413529 @default.
- W3176466636 hasConceptScore W3176466636C115961682 @default.
- W3176466636 hasConceptScore W3176466636C119857082 @default.
- W3176466636 hasConceptScore W3176466636C127313418 @default.
- W3176466636 hasConceptScore W3176466636C138885662 @default.
- W3176466636 hasConceptScore W3176466636C153180895 @default.
- W3176466636 hasConceptScore W3176466636C154945302 @default.
- W3176466636 hasConceptScore W3176466636C165205528 @default.
- W3176466636 hasConceptScore W3176466636C175551986 @default.
- W3176466636 hasConceptScore W3176466636C202444582 @default.