Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176514257> ?p ?o ?g. }
- W3176514257 abstract "During the last decade or so, there has been an insurgence in the deep learning community to solve health-related issues, particularly breast cancer. Following the Camelyon-16 challenge in 2016, several researchers have dedicated their time to build Convolutional Neural Networks (CNNs) to help radiologists and other clinicians diagnose breast cancer. In particular, there has been an emphasis on Ductal Carcinoma in Situ (DCIS); the clinical term for early-stage breast cancer. Large companies have given their fair share of research into this subject, among these Google Deepmind who developed a model in 2020 that has proven to be better than radiologists themselves to diagnose breast cancer correctly. We found that among the issues which exist, there is a need for an explanatory system that goes through the hidden layers of a CNN to highlight those pixels that contributed to the classification of a mammogram. We then chose an open-source, reasonably successful project developed by Prof. Shen, using the CBIS-DDSM image database to run our experiments on. It was later improved using the Resnet-50 and VGG-16 patch-classifiers, analytically comparing the outcome of both. The results showed that the Resnet-50 one converged earlier in the experiments. Following the research by Montavon and Binder, we used the DeepTaylor Layer-wise Relevance Propagation (LRP) model to highlight those pixels and regions within a mammogram which contribute most to its classification. This is represented as a map of those pixels in the original image, which contribute to the diagnosis and the extent to which they contribute to the final classification. The most significant advantage of this algorithm is that it performs exceptionally well with the Resnet-50 patch classifier architecture." @default.
- W3176514257 created "2021-07-05" @default.
- W3176514257 creator A5026132957 @default.
- W3176514257 creator A5051222444 @default.
- W3176514257 creator A5082718586 @default.
- W3176514257 date "2021-06-27" @default.
- W3176514257 modified "2023-09-27" @default.
- W3176514257 title "An XAI Approach to Deep Learning Models in the Detection of Ductal Carcinoma in Situ." @default.
- W3176514257 cites W1528915954 @default.
- W3176514257 cites W1562964770 @default.
- W3176514257 cites W1593414871 @default.
- W3176514257 cites W1686810756 @default.
- W3176514257 cites W1787224781 @default.
- W3176514257 cites W2083927153 @default.
- W3176514257 cites W2099471712 @default.
- W3176514257 cites W2144869872 @default.
- W3176514257 cites W2148825261 @default.
- W3176514257 cites W2194775991 @default.
- W3176514257 cites W2195388612 @default.
- W3176514257 cites W2336525064 @default.
- W3176514257 cites W2506282302 @default.
- W3176514257 cites W2618631885 @default.
- W3176514257 cites W2657631929 @default.
- W3176514257 cites W2772723798 @default.
- W3176514257 cites W2776937175 @default.
- W3176514257 cites W2891503716 @default.
- W3176514257 cites W2897490102 @default.
- W3176514257 cites W2953318193 @default.
- W3176514257 cites W2963464195 @default.
- W3176514257 cites W2964073283 @default.
- W3176514257 cites W2973136764 @default.
- W3176514257 cites W2974829389 @default.
- W3176514257 cites W2993303538 @default.
- W3176514257 cites W3107002483 @default.
- W3176514257 cites W3140022118 @default.
- W3176514257 cites W3160628992 @default.
- W3176514257 hasPublicationYear "2021" @default.
- W3176514257 type Work @default.
- W3176514257 sameAs 3176514257 @default.
- W3176514257 citedByCount "0" @default.
- W3176514257 crossrefType "posted-content" @default.
- W3176514257 hasAuthorship W3176514257A5026132957 @default.
- W3176514257 hasAuthorship W3176514257A5051222444 @default.
- W3176514257 hasAuthorship W3176514257A5082718586 @default.
- W3176514257 hasConcept C108583219 @default.
- W3176514257 hasConcept C111919701 @default.
- W3176514257 hasConcept C119857082 @default.
- W3176514257 hasConcept C121608353 @default.
- W3176514257 hasConcept C126322002 @default.
- W3176514257 hasConcept C153180895 @default.
- W3176514257 hasConcept C154945302 @default.
- W3176514257 hasConcept C158154518 @default.
- W3176514257 hasConcept C160633673 @default.
- W3176514257 hasConcept C17744445 @default.
- W3176514257 hasConcept C199539241 @default.
- W3176514257 hasConcept C2780862961 @default.
- W3176514257 hasConcept C3020375857 @default.
- W3176514257 hasConcept C41008148 @default.
- W3176514257 hasConcept C530470458 @default.
- W3176514257 hasConcept C71924100 @default.
- W3176514257 hasConcept C81363708 @default.
- W3176514257 hasConcept C98045186 @default.
- W3176514257 hasConceptScore W3176514257C108583219 @default.
- W3176514257 hasConceptScore W3176514257C111919701 @default.
- W3176514257 hasConceptScore W3176514257C119857082 @default.
- W3176514257 hasConceptScore W3176514257C121608353 @default.
- W3176514257 hasConceptScore W3176514257C126322002 @default.
- W3176514257 hasConceptScore W3176514257C153180895 @default.
- W3176514257 hasConceptScore W3176514257C154945302 @default.
- W3176514257 hasConceptScore W3176514257C158154518 @default.
- W3176514257 hasConceptScore W3176514257C160633673 @default.
- W3176514257 hasConceptScore W3176514257C17744445 @default.
- W3176514257 hasConceptScore W3176514257C199539241 @default.
- W3176514257 hasConceptScore W3176514257C2780862961 @default.
- W3176514257 hasConceptScore W3176514257C3020375857 @default.
- W3176514257 hasConceptScore W3176514257C41008148 @default.
- W3176514257 hasConceptScore W3176514257C530470458 @default.
- W3176514257 hasConceptScore W3176514257C71924100 @default.
- W3176514257 hasConceptScore W3176514257C81363708 @default.
- W3176514257 hasConceptScore W3176514257C98045186 @default.
- W3176514257 hasLocation W31765142571 @default.
- W3176514257 hasOpenAccess W3176514257 @default.
- W3176514257 hasPrimaryLocation W31765142571 @default.
- W3176514257 hasRelatedWork W2184134308 @default.
- W3176514257 hasRelatedWork W2767926007 @default.
- W3176514257 hasRelatedWork W2783631450 @default.
- W3176514257 hasRelatedWork W2792628126 @default.
- W3176514257 hasRelatedWork W2811123232 @default.
- W3176514257 hasRelatedWork W2913642498 @default.
- W3176514257 hasRelatedWork W2928842276 @default.
- W3176514257 hasRelatedWork W2940901905 @default.
- W3176514257 hasRelatedWork W2942513763 @default.
- W3176514257 hasRelatedWork W2945235878 @default.
- W3176514257 hasRelatedWork W2966768968 @default.
- W3176514257 hasRelatedWork W2991603289 @default.
- W3176514257 hasRelatedWork W3023402959 @default.
- W3176514257 hasRelatedWork W3107409668 @default.
- W3176514257 hasRelatedWork W3135536403 @default.
- W3176514257 hasRelatedWork W3179148101 @default.
- W3176514257 hasRelatedWork W3180432425 @default.