Matches in SemOpenAlex for { <https://semopenalex.org/work/W317652590> ?p ?o ?g. }
- W317652590 endingPage "9" @default.
- W317652590 startingPage "1" @default.
- W317652590 abstract "In this paper, feature selection and parameters determination in SVM are cast as an energy minimization procedure. The problem of feature selection and parameters determination is a very difficult problem where the number of feature is very large and where the features are highly correlated. We define the problem of feature selection and parameters determination in SVM as a combinatorial problem and we use a stochastic method that, theoretically, guarantees to reach the global optimum. Several public datasets are employed to evaluate the performance of our approach. Also, we propose to use the DNA Microarray Datasets which are characterized by the large number of features. To validate our approach, we apply it to image classification. The feature descriptors of the images were extracted by using the Pyramid Histogram of Oriented Gradients. The proposed approach was compared with twenty feature selection methods. Experimental results indicate that the classification accuracy rates of the proposed approach exceed those of other approaches." @default.
- W317652590 created "2016-06-24" @default.
- W317652590 creator A5029611844 @default.
- W317652590 creator A5038521221 @default.
- W317652590 creator A5046210131 @default.
- W317652590 creator A5061099557 @default.
- W317652590 date "2015-04-08" @default.
- W317652590 modified "2023-09-25" @default.
- W317652590 title "An Optimization-Based Framework for Feature Selection and Parameters Determination of SVMs" @default.
- W317652590 cites W144252458 @default.
- W317652590 cites W1506281249 @default.
- W317652590 cites W1510073064 @default.
- W317652590 cites W1580817707 @default.
- W317652590 cites W1967539118 @default.
- W317652590 cites W1984144394 @default.
- W317652590 cites W1985367615 @default.
- W317652590 cites W1986604238 @default.
- W317652590 cites W2000277463 @default.
- W317652590 cites W2002532360 @default.
- W317652590 cites W2004288989 @default.
- W317652590 cites W2013708872 @default.
- W317652590 cites W2017337590 @default.
- W317652590 cites W2024060531 @default.
- W317652590 cites W2031092884 @default.
- W317652590 cites W2043772506 @default.
- W317652590 cites W2054765427 @default.
- W317652590 cites W2056760934 @default.
- W317652590 cites W2058628428 @default.
- W317652590 cites W2064123298 @default.
- W317652590 cites W2067697112 @default.
- W317652590 cites W2072880371 @default.
- W317652590 cites W2099111195 @default.
- W317652590 cites W2099884867 @default.
- W317652590 cites W2108899349 @default.
- W317652590 cites W2109943925 @default.
- W317652590 cites W2119821739 @default.
- W317652590 cites W2124258777 @default.
- W317652590 cites W2126626353 @default.
- W317652590 cites W2133703553 @default.
- W317652590 cites W2139109103 @default.
- W317652590 cites W2141409867 @default.
- W317652590 cites W2143426320 @default.
- W317652590 cites W2146578571 @default.
- W317652590 cites W2149454242 @default.
- W317652590 cites W2149772057 @default.
- W317652590 cites W2149870286 @default.
- W317652590 cites W2154053567 @default.
- W317652590 cites W2154683974 @default.
- W317652590 cites W2155904486 @default.
- W317652590 cites W2156504490 @default.
- W317652590 cites W2156571267 @default.
- W317652590 cites W2158001550 @default.
- W317652590 cites W2158933803 @default.
- W317652590 cites W2162833766 @default.
- W317652590 cites W2163751183 @default.
- W317652590 cites W2171296290 @default.
- W317652590 cites W2171528238 @default.
- W317652590 cites W2296728097 @default.
- W317652590 cites W2626309135 @default.
- W317652590 cites W3123622325 @default.
- W317652590 cites W600570876 @default.
- W317652590 cites W2086814479 @default.
- W317652590 cites W3022294502 @default.
- W317652590 doi "https://doi.org/10.5815/ijitcs.2015.05.01" @default.
- W317652590 hasPublicationYear "2015" @default.
- W317652590 type Work @default.
- W317652590 sameAs 317652590 @default.
- W317652590 citedByCount "2" @default.
- W317652590 countsByYear W3176525902016 @default.
- W317652590 countsByYear W3176525902021 @default.
- W317652590 crossrefType "journal-article" @default.
- W317652590 hasAuthorship W317652590A5029611844 @default.
- W317652590 hasAuthorship W317652590A5038521221 @default.
- W317652590 hasAuthorship W317652590A5046210131 @default.
- W317652590 hasAuthorship W317652590A5061099557 @default.
- W317652590 hasBestOaLocation W3176525901 @default.
- W317652590 hasConcept C119857082 @default.
- W317652590 hasConcept C12267149 @default.
- W317652590 hasConcept C124101348 @default.
- W317652590 hasConcept C138885662 @default.
- W317652590 hasConcept C148483581 @default.
- W317652590 hasConcept C153180895 @default.
- W317652590 hasConcept C154945302 @default.
- W317652590 hasConcept C2776401178 @default.
- W317652590 hasConcept C41008148 @default.
- W317652590 hasConcept C41895202 @default.
- W317652590 hasConcept C81917197 @default.
- W317652590 hasConceptScore W317652590C119857082 @default.
- W317652590 hasConceptScore W317652590C12267149 @default.
- W317652590 hasConceptScore W317652590C124101348 @default.
- W317652590 hasConceptScore W317652590C138885662 @default.
- W317652590 hasConceptScore W317652590C148483581 @default.
- W317652590 hasConceptScore W317652590C153180895 @default.
- W317652590 hasConceptScore W317652590C154945302 @default.
- W317652590 hasConceptScore W317652590C2776401178 @default.
- W317652590 hasConceptScore W317652590C41008148 @default.
- W317652590 hasConceptScore W317652590C41895202 @default.
- W317652590 hasConceptScore W317652590C81917197 @default.