Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176549743> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3176549743 endingPage "269" @default.
- W3176549743 startingPage "253" @default.
- W3176549743 abstract "Societal factors such as globalization, supermarket growth, rapid unplanned urbanization, sedentary lifestyle, economical distribution, and social position gradually develop behavioral risk factors in humans. Behavioral risk factors are unhealthy habits (consumption of tobacco and alcohol), improper diet (consumption of high calorific discretionary fast foods, sweet beverages), and physical inactivity. The behavioral risks may lead to physiological risks, body–energy imbalance. Obesity is one of the foremost lifestyle diseases that leads to other health conditions, such as cardiovascular disease (CVDs), chronic obstructive pulmonary disease (COPD), cancer, diabetes type II, hypertension, and depression. It is not restricted within the boundary of age and socio-economic background. “World health organization (WHO)” has predicted that lifestyle diseases will claim 71–73% of the global death, by the end of 2020. It can be prevented with proper identification of associated risk factors and appropriate behavioral intervention plans. The key determinants of obesity are—a. age, b. weight, c. height, and d. body mass index (BMI). This paper addresses the potential of ensemble machine learning approaches to assess the associated risk factors of obesity through the evaluation of existing, publicly accessible health datasets, such as “Kaggle”, and “UCI”. Followed by, we compared our identified risk factors with the obtained risk factors from literature study. In future, we are intending to reuse the obtained knowledge to collect data from a controlled trial of adult population (age between 20 and 60) in south Norway to generate personalized, contextual, and behavioral recommendations with a smart electronic coaching (eCoaching) system for behavioral intervention for the promotion of healthy lifestyle." @default.
- W3176549743 created "2021-07-05" @default.
- W3176549743 creator A5063683767 @default.
- W3176549743 creator A5072191641 @default.
- W3176549743 creator A5082112611 @default.
- W3176549743 creator A5087675927 @default.
- W3176549743 date "2021-01-01" @default.
- W3176549743 modified "2023-09-24" @default.
- W3176549743 title "Comparing Performance of Ensemble-Based Machine Learning Algorithms to Identify Potential Obesity Risk Factors from Public Health Datasets" @default.
- W3176549743 cites W2784162310 @default.
- W3176549743 cites W2899203157 @default.
- W3176549743 cites W2899235031 @default.
- W3176549743 cites W2913349235 @default.
- W3176549743 cites W2961085424 @default.
- W3176549743 cites W2964488346 @default.
- W3176549743 cites W2991905359 @default.
- W3176549743 cites W3021083477 @default.
- W3176549743 cites W3031373376 @default.
- W3176549743 cites W3122897351 @default.
- W3176549743 cites W4297944103 @default.
- W3176549743 cites W2800607264 @default.
- W3176549743 doi "https://doi.org/10.1007/978-981-15-9927-9_26" @default.
- W3176549743 hasPublicationYear "2021" @default.
- W3176549743 type Work @default.
- W3176549743 sameAs 3176549743 @default.
- W3176549743 citedByCount "6" @default.
- W3176549743 countsByYear W31765497432021 @default.
- W3176549743 countsByYear W31765497432022 @default.
- W3176549743 countsByYear W31765497432023 @default.
- W3176549743 crossrefType "book-chapter" @default.
- W3176549743 hasAuthorship W3176549743A5063683767 @default.
- W3176549743 hasAuthorship W3176549743A5072191641 @default.
- W3176549743 hasAuthorship W3176549743A5082112611 @default.
- W3176549743 hasAuthorship W3176549743A5087675927 @default.
- W3176549743 hasConcept C119857082 @default.
- W3176549743 hasConcept C126322002 @default.
- W3176549743 hasConcept C138816342 @default.
- W3176549743 hasConcept C142724271 @default.
- W3176549743 hasConcept C159110408 @default.
- W3176549743 hasConcept C2779134260 @default.
- W3176549743 hasConcept C2780221984 @default.
- W3176549743 hasConcept C41008148 @default.
- W3176549743 hasConcept C511355011 @default.
- W3176549743 hasConcept C71924100 @default.
- W3176549743 hasConcept C74909509 @default.
- W3176549743 hasConcept C99454951 @default.
- W3176549743 hasConceptScore W3176549743C119857082 @default.
- W3176549743 hasConceptScore W3176549743C126322002 @default.
- W3176549743 hasConceptScore W3176549743C138816342 @default.
- W3176549743 hasConceptScore W3176549743C142724271 @default.
- W3176549743 hasConceptScore W3176549743C159110408 @default.
- W3176549743 hasConceptScore W3176549743C2779134260 @default.
- W3176549743 hasConceptScore W3176549743C2780221984 @default.
- W3176549743 hasConceptScore W3176549743C41008148 @default.
- W3176549743 hasConceptScore W3176549743C511355011 @default.
- W3176549743 hasConceptScore W3176549743C71924100 @default.
- W3176549743 hasConceptScore W3176549743C74909509 @default.
- W3176549743 hasConceptScore W3176549743C99454951 @default.
- W3176549743 hasLocation W31765497431 @default.
- W3176549743 hasOpenAccess W3176549743 @default.
- W3176549743 hasPrimaryLocation W31765497431 @default.
- W3176549743 hasRelatedWork W1541457072 @default.
- W3176549743 hasRelatedWork W1579542364 @default.
- W3176549743 hasRelatedWork W2003107521 @default.
- W3176549743 hasRelatedWork W2062993532 @default.
- W3176549743 hasRelatedWork W2065722682 @default.
- W3176549743 hasRelatedWork W2167289092 @default.
- W3176549743 hasRelatedWork W3199257959 @default.
- W3176549743 hasRelatedWork W3214469948 @default.
- W3176549743 hasRelatedWork W4243880106 @default.
- W3176549743 hasRelatedWork W2019851000 @default.
- W3176549743 isParatext "false" @default.
- W3176549743 isRetracted "false" @default.
- W3176549743 magId "3176549743" @default.
- W3176549743 workType "book-chapter" @default.