Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176585657> ?p ?o ?g. }
- W3176585657 endingPage "4365" @default.
- W3176585657 startingPage "4365" @default.
- W3176585657 abstract "Radar target classification is an important task in the missile defense system. State-of-the-art studies using micro-doppler frequency have been conducted to classify the space object targets. However, existing studies rely highly on feature extraction methods. Therefore, the generalization performance of the classifier is limited and there is room for improvement. Recently, to improve the classification performance, the popular approaches are to build a convolutional neural network (CNN) architecture with the help of transfer learning and use the generative adversarial network (GAN) to increase the training datasets. However, these methods still have drawbacks. First, they use only one feature to train the network. Therefore, the existing methods cannot guarantee that the classifier learns more robust target characteristics. Second, it is difficult to obtain large amounts of data that accurately mimic real-world target features by performing data augmentation via GAN instead of simulation. To mitigate the above problem, we propose a transfer learning-based parallel network with the spectrogram and the cadence velocity diagram (CVD) as the inputs. In addition, we obtain an EM simulation-based dataset. The radar-received signal is simulated according to a variety of dynamics using the concept of shooting and bouncing rays with relative aspect angles rather than the scattering center reconstruction method. Our proposed model is evaluated on our generated dataset. The proposed method achieved about 0.01 to 0.39% higher accuracy than the pre-trained networks with a single input feature." @default.
- W3176585657 created "2021-07-05" @default.
- W3176585657 creator A5023448208 @default.
- W3176585657 creator A5028013611 @default.
- W3176585657 creator A5043976004 @default.
- W3176585657 creator A5065678982 @default.
- W3176585657 creator A5082972396 @default.
- W3176585657 date "2021-06-25" @default.
- W3176585657 modified "2023-10-04" @default.
- W3176585657 title "Classification of Space Objects by Using Deep Learning with Micro-Doppler Signature Images" @default.
- W3176585657 cites W1975595060 @default.
- W3176585657 cites W2018299222 @default.
- W3176585657 cites W2026668568 @default.
- W3176585657 cites W2034813089 @default.
- W3176585657 cites W2045423428 @default.
- W3176585657 cites W2059249911 @default.
- W3176585657 cites W2089725917 @default.
- W3176585657 cites W2110646474 @default.
- W3176585657 cites W2116293365 @default.
- W3176585657 cites W2153594606 @default.
- W3176585657 cites W2587503573 @default.
- W3176585657 cites W2793121084 @default.
- W3176585657 cites W2800130527 @default.
- W3176585657 cites W2891657227 @default.
- W3176585657 cites W2896408289 @default.
- W3176585657 cites W2922230884 @default.
- W3176585657 cites W2944605902 @default.
- W3176585657 cites W2952340467 @default.
- W3176585657 cites W3109637960 @default.
- W3176585657 cites W3113081890 @default.
- W3176585657 cites W3117282899 @default.
- W3176585657 doi "https://doi.org/10.3390/s21134365" @default.
- W3176585657 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8271875" @default.
- W3176585657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34202331" @default.
- W3176585657 hasPublicationYear "2021" @default.
- W3176585657 type Work @default.
- W3176585657 sameAs 3176585657 @default.
- W3176585657 citedByCount "5" @default.
- W3176585657 countsByYear W31765856572022 @default.
- W3176585657 crossrefType "journal-article" @default.
- W3176585657 hasAuthorship W3176585657A5023448208 @default.
- W3176585657 hasAuthorship W3176585657A5028013611 @default.
- W3176585657 hasAuthorship W3176585657A5043976004 @default.
- W3176585657 hasAuthorship W3176585657A5065678982 @default.
- W3176585657 hasAuthorship W3176585657A5082972396 @default.
- W3176585657 hasBestOaLocation W31765856571 @default.
- W3176585657 hasConcept C101738243 @default.
- W3176585657 hasConcept C108583219 @default.
- W3176585657 hasConcept C119857082 @default.
- W3176585657 hasConcept C150899416 @default.
- W3176585657 hasConcept C153180895 @default.
- W3176585657 hasConcept C154945302 @default.
- W3176585657 hasConcept C193415008 @default.
- W3176585657 hasConcept C38652104 @default.
- W3176585657 hasConcept C41008148 @default.
- W3176585657 hasConcept C45273575 @default.
- W3176585657 hasConcept C52622490 @default.
- W3176585657 hasConcept C554190296 @default.
- W3176585657 hasConcept C76155785 @default.
- W3176585657 hasConcept C81363708 @default.
- W3176585657 hasConcept C83665646 @default.
- W3176585657 hasConcept C95623464 @default.
- W3176585657 hasConceptScore W3176585657C101738243 @default.
- W3176585657 hasConceptScore W3176585657C108583219 @default.
- W3176585657 hasConceptScore W3176585657C119857082 @default.
- W3176585657 hasConceptScore W3176585657C150899416 @default.
- W3176585657 hasConceptScore W3176585657C153180895 @default.
- W3176585657 hasConceptScore W3176585657C154945302 @default.
- W3176585657 hasConceptScore W3176585657C193415008 @default.
- W3176585657 hasConceptScore W3176585657C38652104 @default.
- W3176585657 hasConceptScore W3176585657C41008148 @default.
- W3176585657 hasConceptScore W3176585657C45273575 @default.
- W3176585657 hasConceptScore W3176585657C52622490 @default.
- W3176585657 hasConceptScore W3176585657C554190296 @default.
- W3176585657 hasConceptScore W3176585657C76155785 @default.
- W3176585657 hasConceptScore W3176585657C81363708 @default.
- W3176585657 hasConceptScore W3176585657C83665646 @default.
- W3176585657 hasConceptScore W3176585657C95623464 @default.
- W3176585657 hasIssue "13" @default.
- W3176585657 hasLocation W31765856571 @default.
- W3176585657 hasLocation W31765856572 @default.
- W3176585657 hasLocation W31765856573 @default.
- W3176585657 hasOpenAccess W3176585657 @default.
- W3176585657 hasPrimaryLocation W31765856571 @default.
- W3176585657 hasRelatedWork W2732542196 @default.
- W3176585657 hasRelatedWork W2772780115 @default.
- W3176585657 hasRelatedWork W2936488316 @default.
- W3176585657 hasRelatedWork W2946016983 @default.
- W3176585657 hasRelatedWork W3091976719 @default.
- W3176585657 hasRelatedWork W3156786002 @default.
- W3176585657 hasRelatedWork W3176585657 @default.
- W3176585657 hasRelatedWork W4312754519 @default.
- W3176585657 hasRelatedWork W4366224123 @default.
- W3176585657 hasRelatedWork W564581980 @default.
- W3176585657 hasVolume "21" @default.
- W3176585657 isParatext "false" @default.
- W3176585657 isRetracted "false" @default.
- W3176585657 magId "3176585657" @default.