Matches in SemOpenAlex for { <https://semopenalex.org/work/W317670> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W317670 endingPage "192" @default.
- W317670 startingPage "171" @default.
- W317670 abstract "In recent years the plunging costs of sensors/storage have made it possible to obtain vast amounts of medical telemetry, both in clinical settings and more recently, even in patient’s own homes . However for this data to be useful, it must be annotated. This annotation, requiring the attention of medical experts is very expensive and time consuming, and remains the critical bottleneck in medical analysis. The technique of Semi-supervised learning is the obvious way to reduce the need for human labor, however, most such algorithms are designed for intrinsically discrete objects such as graphs or strings, and do not work well in this domain, which requires the ability to deal with real-valued objects arriving in a streaming fashion. In this work we make two contributions. First, we demonstrate that in many cases a surprisingly small set of human annotated examples are sufficient to perform accurate classification. Second, we devise a novel parameter-free stopping criterion for semi-supervised learning. We evaluate our work with a comprehensive set of experiments on diverse medical data sources including electrocardiograms. Our experimental results suggest that our approach can typically construct accurate classifiers even if given only a single annotated instance." @default.
- W317670 created "2016-06-24" @default.
- W317670 creator A5010428044 @default.
- W317670 creator A5044070973 @default.
- W317670 creator A5078245746 @default.
- W317670 creator A5084311302 @default.
- W317670 date "2014-01-01" @default.
- W317670 modified "2023-09-23" @default.
- W317670 title "A Minimum Description Length Technique for Semi-Supervised Time Series Classification" @default.
- W317670 cites W120250592 @default.
- W317670 cites W1479807131 @default.
- W317670 cites W1542422504 @default.
- W317670 cites W1580625695 @default.
- W317670 cites W166154944 @default.
- W317670 cites W1785021972 @default.
- W317670 cites W1827554748 @default.
- W317670 cites W1970674491 @default.
- W317670 cites W1979255715 @default.
- W317670 cites W2010710484 @default.
- W317670 cites W2029767187 @default.
- W317670 cites W2034370406 @default.
- W317670 cites W2039260438 @default.
- W317670 cites W2048679005 @default.
- W317670 cites W2049877533 @default.
- W317670 cites W2079057609 @default.
- W317670 cites W2083236658 @default.
- W317670 cites W2096210555 @default.
- W317670 cites W2101210369 @default.
- W317670 cites W2101452318 @default.
- W317670 cites W2103308415 @default.
- W317670 cites W2104755048 @default.
- W317670 cites W2106090237 @default.
- W317670 cites W2140234018 @default.
- W317670 cites W2162800060 @default.
- W317670 cites W2163568299 @default.
- W317670 cites W4230960895 @default.
- W317670 cites W58346954 @default.
- W317670 cites W96651161 @default.
- W317670 doi "https://doi.org/10.1007/978-3-319-04717-1_8" @default.
- W317670 hasPublicationYear "2014" @default.
- W317670 type Work @default.
- W317670 sameAs 317670 @default.
- W317670 citedByCount "13" @default.
- W317670 countsByYear W3176702015 @default.
- W317670 countsByYear W3176702016 @default.
- W317670 countsByYear W3176702017 @default.
- W317670 countsByYear W3176702019 @default.
- W317670 countsByYear W3176702022 @default.
- W317670 crossrefType "book-chapter" @default.
- W317670 hasAuthorship W317670A5010428044 @default.
- W317670 hasAuthorship W317670A5044070973 @default.
- W317670 hasAuthorship W317670A5078245746 @default.
- W317670 hasAuthorship W317670A5084311302 @default.
- W317670 hasConcept C124101348 @default.
- W317670 hasConcept C127313418 @default.
- W317670 hasConcept C143724316 @default.
- W317670 hasConcept C151730666 @default.
- W317670 hasConcept C153180895 @default.
- W317670 hasConcept C154945302 @default.
- W317670 hasConcept C41008148 @default.
- W317670 hasConceptScore W317670C124101348 @default.
- W317670 hasConceptScore W317670C127313418 @default.
- W317670 hasConceptScore W317670C143724316 @default.
- W317670 hasConceptScore W317670C151730666 @default.
- W317670 hasConceptScore W317670C153180895 @default.
- W317670 hasConceptScore W317670C154945302 @default.
- W317670 hasConceptScore W317670C41008148 @default.
- W317670 hasLocation W3176701 @default.
- W317670 hasOpenAccess W317670 @default.
- W317670 hasPrimaryLocation W3176701 @default.
- W317670 hasRelatedWork W1978450727 @default.
- W317670 hasRelatedWork W2033914206 @default.
- W317670 hasRelatedWork W2146076056 @default.
- W317670 hasRelatedWork W2163831990 @default.
- W317670 hasRelatedWork W2378160586 @default.
- W317670 hasRelatedWork W2996038082 @default.
- W317670 hasRelatedWork W3003836766 @default.
- W317670 hasRelatedWork W3107474891 @default.
- W317670 hasRelatedWork W4244943737 @default.
- W317670 hasRelatedWork W2289108895 @default.
- W317670 isParatext "false" @default.
- W317670 isRetracted "false" @default.
- W317670 magId "317670" @default.
- W317670 workType "book-chapter" @default.