Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176710854> ?p ?o ?g. }
- W3176710854 endingPage "3946" @default.
- W3176710854 startingPage "3946" @default.
- W3176710854 abstract "The present study reports the development of a deep learning artificial intelligence (AI) model for predicting the thermal performance of evaporative cooling systems, which are widely used for thermal comfort in different applications. The existing, conventional methods for the analysis of evaporation-assisted cooling systems rely on experimental, mathematical, and empirical approaches in order to determine their thermal performance, which limits their applications in diverse and ambient spatiotemporal conditions. The objective of this research was to predict the thermal performance of three evaporation-assisted air-conditioning systems—direct, indirect, and Maisotsenko evaporative cooling systems—by using an AI approach. For this purpose, a deep learning algorithm was developed and lumped hyperparameters were initially chosen. A correlation analysis was performed prior to the development of the AI model in order to identify the input features that could be the most influential for the prediction efficiency. The deep learning algorithm was then optimized to increase the learning rate and predictive accuracy with respect to experimental data by tuning the hyperparameters, such as by manipulating the activation functions, the number of hidden layers, and the neurons in each layer by incorporating optimizers, including Adam and RMsprop. The results confirmed the applicability of the method with an overall value of R2 = 0.987 between the input data and ground-truth data, showing that the most competent model could predict the designated output features (Toutdb, wout, and Eoutair). The suggested method is straightforward and was found to be practical in the evaluation of the thermal performance of deployed air conditioning systems under different conditions. The results supported the hypothesis that the proposed deep learning AI algorithm has the potential to explore the feasibility of the three evaporative cooling systems in dynamic ambient conditions for various agricultural and livestock applications." @default.
- W3176710854 created "2021-07-05" @default.
- W3176710854 creator A5004618787 @default.
- W3176710854 creator A5005419988 @default.
- W3176710854 creator A5028268549 @default.
- W3176710854 creator A5039448883 @default.
- W3176710854 creator A5044396302 @default.
- W3176710854 creator A5047472547 @default.
- W3176710854 creator A5059561289 @default.
- W3176710854 creator A5084908295 @default.
- W3176710854 creator A5090536259 @default.
- W3176710854 date "2021-07-01" @default.
- W3176710854 modified "2023-10-06" @default.
- W3176710854 title "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems" @default.
- W3176710854 cites W1459687978 @default.
- W3176710854 cites W1479898937 @default.
- W3176710854 cites W1756393333 @default.
- W3176710854 cites W1969404522 @default.
- W3176710854 cites W1973325732 @default.
- W3176710854 cites W1978772542 @default.
- W3176710854 cites W1986069167 @default.
- W3176710854 cites W1992993448 @default.
- W3176710854 cites W2000304964 @default.
- W3176710854 cites W2000956074 @default.
- W3176710854 cites W2022223561 @default.
- W3176710854 cites W2035721961 @default.
- W3176710854 cites W2056912058 @default.
- W3176710854 cites W2088980337 @default.
- W3176710854 cites W2097087443 @default.
- W3176710854 cites W2101108516 @default.
- W3176710854 cites W2101559353 @default.
- W3176710854 cites W2113952909 @default.
- W3176710854 cites W2127929898 @default.
- W3176710854 cites W2155889930 @default.
- W3176710854 cites W2163121678 @default.
- W3176710854 cites W2193770698 @default.
- W3176710854 cites W2201221078 @default.
- W3176710854 cites W2298246109 @default.
- W3176710854 cites W2402068981 @default.
- W3176710854 cites W2412279857 @default.
- W3176710854 cites W2511900227 @default.
- W3176710854 cites W2512406746 @default.
- W3176710854 cites W2588102497 @default.
- W3176710854 cites W2786357964 @default.
- W3176710854 cites W2894813100 @default.
- W3176710854 cites W2918886397 @default.
- W3176710854 cites W2954582273 @default.
- W3176710854 cites W3024643022 @default.
- W3176710854 cites W3032090490 @default.
- W3176710854 cites W3035339724 @default.
- W3176710854 cites W3049725576 @default.
- W3176710854 cites W3093540969 @default.
- W3176710854 cites W3109254476 @default.
- W3176710854 cites W3110324706 @default.
- W3176710854 cites W3127858728 @default.
- W3176710854 cites W3127925643 @default.
- W3176710854 cites W3132176805 @default.
- W3176710854 cites W3133024283 @default.
- W3176710854 cites W3133881892 @default.
- W3176710854 cites W3168678334 @default.
- W3176710854 doi "https://doi.org/10.3390/en14133946" @default.
- W3176710854 hasPublicationYear "2021" @default.
- W3176710854 type Work @default.
- W3176710854 sameAs 3176710854 @default.
- W3176710854 citedByCount "22" @default.
- W3176710854 countsByYear W31767108542021 @default.
- W3176710854 countsByYear W31767108542022 @default.
- W3176710854 countsByYear W31767108542023 @default.
- W3176710854 crossrefType "journal-article" @default.
- W3176710854 hasAuthorship W3176710854A5004618787 @default.
- W3176710854 hasAuthorship W3176710854A5005419988 @default.
- W3176710854 hasAuthorship W3176710854A5028268549 @default.
- W3176710854 hasAuthorship W3176710854A5039448883 @default.
- W3176710854 hasAuthorship W3176710854A5044396302 @default.
- W3176710854 hasAuthorship W3176710854A5047472547 @default.
- W3176710854 hasAuthorship W3176710854A5059561289 @default.
- W3176710854 hasAuthorship W3176710854A5084908295 @default.
- W3176710854 hasAuthorship W3176710854A5090536259 @default.
- W3176710854 hasBestOaLocation W31767108541 @default.
- W3176710854 hasConcept C103742991 @default.
- W3176710854 hasConcept C105795698 @default.
- W3176710854 hasConcept C119857082 @default.
- W3176710854 hasConcept C121332964 @default.
- W3176710854 hasConcept C127413603 @default.
- W3176710854 hasConcept C146849305 @default.
- W3176710854 hasConcept C153294291 @default.
- W3176710854 hasConcept C154945302 @default.
- W3176710854 hasConcept C173991790 @default.
- W3176710854 hasConcept C204530211 @default.
- W3176710854 hasConcept C33923547 @default.
- W3176710854 hasConcept C41008148 @default.
- W3176710854 hasConcept C55037315 @default.
- W3176710854 hasConcept C61441594 @default.
- W3176710854 hasConcept C78519656 @default.
- W3176710854 hasConcept C8642999 @default.
- W3176710854 hasConceptScore W3176710854C103742991 @default.
- W3176710854 hasConceptScore W3176710854C105795698 @default.
- W3176710854 hasConceptScore W3176710854C119857082 @default.