Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176725665> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3176725665 abstract "In this paper, we introduce a novel 3D shape reconstruction method from single-view sketch image based on deep neural network. The proposed pipeline is mainly composed of three modules. The first module is sketch component segmentation based on multi-modal DNN fusion and is used to segment a given sketch into a series of basic units and build transformation template by the knots between them. The second module is a non-linear transformation network for multifarious sketch generation with the obtained transformation template. It creates the transformation representation of a sketch by extracting the shape features of an input sketch and transformation template samples. The third module is deep 3D shape reconstruction using multifarious sketches, which takes the obtianed sketches as input to reconstruct 3D shapes with a generative model. It fuses and optimizes features of multiple views and thus is more likely to generate high-quality 3D shapes. To evaluate the effectiveness of the proposed method, we conduct extensive experiments on a public 3D reconstruction dataset. The results demonstrate that our model can achieve better reconstruction performance than peer methods." @default.
- W3176725665 created "2021-07-05" @default.
- W3176725665 creator A5013366970 @default.
- W3176725665 creator A5024351498 @default.
- W3176725665 creator A5054139047 @default.
- W3176725665 creator A5064344416 @default.
- W3176725665 creator A5086529957 @default.
- W3176725665 creator A5090235505 @default.
- W3176725665 creator A5091806934 @default.
- W3176725665 date "2020-09-01" @default.
- W3176725665 modified "2023-10-17" @default.
- W3176725665 title "Deep 3D Shape Reconstruction from Single-View Sketch Image" @default.
- W3176725665 cites W1901129140 @default.
- W3176725665 cites W1972420097 @default.
- W3176725665 cites W1992642990 @default.
- W3176725665 cites W2495603374 @default.
- W3176725665 cites W2810981979 @default.
- W3176725665 cites W2895555218 @default.
- W3176725665 cites W2897035133 @default.
- W3176725665 cites W2941053403 @default.
- W3176725665 cites W2963600949 @default.
- W3176725665 cites W2965072550 @default.
- W3176725665 cites W2972700807 @default.
- W3176725665 cites W3002204588 @default.
- W3176725665 cites W3004246880 @default.
- W3176725665 cites W3011876626 @default.
- W3176725665 cites W3023302467 @default.
- W3176725665 cites W3035214865 @default.
- W3176725665 cites W3080549542 @default.
- W3176725665 cites W3084214008 @default.
- W3176725665 cites W3086094296 @default.
- W3176725665 cites W3087509453 @default.
- W3176725665 doi "https://doi.org/10.1109/icdh51081.2020.00039" @default.
- W3176725665 hasPublicationYear "2020" @default.
- W3176725665 type Work @default.
- W3176725665 sameAs 3176725665 @default.
- W3176725665 citedByCount "2" @default.
- W3176725665 countsByYear W31767256652021 @default.
- W3176725665 countsByYear W31767256652022 @default.
- W3176725665 crossrefType "proceedings-article" @default.
- W3176725665 hasAuthorship W3176725665A5013366970 @default.
- W3176725665 hasAuthorship W3176725665A5024351498 @default.
- W3176725665 hasAuthorship W3176725665A5054139047 @default.
- W3176725665 hasAuthorship W3176725665A5064344416 @default.
- W3176725665 hasAuthorship W3176725665A5086529957 @default.
- W3176725665 hasAuthorship W3176725665A5090235505 @default.
- W3176725665 hasAuthorship W3176725665A5091806934 @default.
- W3176725665 hasConcept C11413529 @default.
- W3176725665 hasConcept C115961682 @default.
- W3176725665 hasConcept C121684516 @default.
- W3176725665 hasConcept C141379421 @default.
- W3176725665 hasConcept C154945302 @default.
- W3176725665 hasConcept C2779231336 @default.
- W3176725665 hasConcept C31972630 @default.
- W3176725665 hasConcept C41008148 @default.
- W3176725665 hasConceptScore W3176725665C11413529 @default.
- W3176725665 hasConceptScore W3176725665C115961682 @default.
- W3176725665 hasConceptScore W3176725665C121684516 @default.
- W3176725665 hasConceptScore W3176725665C141379421 @default.
- W3176725665 hasConceptScore W3176725665C154945302 @default.
- W3176725665 hasConceptScore W3176725665C2779231336 @default.
- W3176725665 hasConceptScore W3176725665C31972630 @default.
- W3176725665 hasConceptScore W3176725665C41008148 @default.
- W3176725665 hasFunder F4320310972 @default.
- W3176725665 hasFunder F4320321001 @default.
- W3176725665 hasFunder F4320321921 @default.
- W3176725665 hasLocation W31767256651 @default.
- W3176725665 hasOpenAccess W3176725665 @default.
- W3176725665 hasPrimaryLocation W31767256651 @default.
- W3176725665 hasRelatedWork W2005185696 @default.
- W3176725665 hasRelatedWork W2092957489 @default.
- W3176725665 hasRelatedWork W2130228941 @default.
- W3176725665 hasRelatedWork W2161229648 @default.
- W3176725665 hasRelatedWork W2166044122 @default.
- W3176725665 hasRelatedWork W2235753890 @default.
- W3176725665 hasRelatedWork W2314419244 @default.
- W3176725665 hasRelatedWork W2366116130 @default.
- W3176725665 hasRelatedWork W2993674027 @default.
- W3176725665 hasRelatedWork W3109244347 @default.
- W3176725665 isParatext "false" @default.
- W3176725665 isRetracted "false" @default.
- W3176725665 magId "3176725665" @default.
- W3176725665 workType "article" @default.