Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176777755> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3176777755 endingPage "685" @default.
- W3176777755 startingPage "679" @default.
- W3176777755 abstract "Objective: To compare the performance of multiple machine learning algorithms in predicting recurrence after resection of early-stage hepatocellular carcinoma(HCC). Methods: Clinical data of 882 early-stage HCC patients who were admitted to the First Affiliated Hospital of Nanjing Medical University from May 2009 to December 2019 and treated with curative surgical resection were retrospectively collected. There were 701 males and 181 females,with an age of (57.3±10.5)years(range:21 to 86 years). All patients were randomly assigned in a 2∶1 ratio, the training dataset consisted of 588 patients and the test dataset consisted of 294 patients. The construction of machine learning-based prediction models included random survival forest(RSF),gradient boosting machine,elastic net regression and Cox regression model. The prediction accuracy of the model was measured by the concordance index(C-index). The prediction error of the model was measured by the integrated Brier score. Model fit was assessed by the calibration plot. The performance of machine learning models with that of rival model and HCC staging systems was compared. All models were validated in the independent test dataset. Results: Median recurrence-free survival was 61.7 months in the training dataset while median recurrence-free survival was 61.9 months in the validation dataset, there was no significant difference between two datasets in terms of recurrence-free survival(χ²=0.029,P=0.865). The RSF model consisted of 5 commonly used clinicopathological characteristics, including albumin-bilirubin grade,serum alpha fetoprotein,tumor number,type of hepatectomy and microvascular invasion. In both training and test datasets,the RSF model provided the best prediction accuracy,with respective C-index of 0.758(95%CI:0.725 to 0.791) and 0.749(95%CI:0.700 to 0.797),and the lowest prediction error,with respective integrated Brier score of 0.171 and 0.151. The prediction accuracy of RSF model for recurrence after resection of early-stage HCC was superior to that of other machine learning models,rival model(ERASL model) as well as HCC staging systems(BCLC,CNLC and TNM staging),with statistically significant difference(P<0.01). Calibration curves demonstrated good agreement between RSF model-predicted probabilities and observed outcomes.All patients could be stratified into low-risk,intermediate-risk or high-risk group based on RSF model;statistically significant differences among three risk groups were observed in both training and test datasets(P<0.01). The risk stratification of RSF model was superior to that of TNM staging. Conclusion: The proposed RSF model assembled with 5 commonly used clinicopathological characteristics in this study can predict the recurrence risk with favorable accuracy that may facilitate clinical decision-support for patients with early-stage HCC." @default.
- W3176777755 created "2021-07-05" @default.
- W3176777755 creator A5001457383 @default.
- W3176777755 creator A5009569577 @default.
- W3176777755 creator A5042841773 @default.
- W3176777755 creator A5050985619 @default.
- W3176777755 creator A5056512831 @default.
- W3176777755 date "2021-08-01" @default.
- W3176777755 modified "2023-09-23" @default.
- W3176777755 title "[Application value of machine learning algorithms for predicting recurrence after resection of early-stage hepatocellular carcinoma]." @default.
- W3176777755 doi "https://doi.org/10.3760/cma.j.cn112139-20201026-00768" @default.
- W3176777755 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34192861" @default.
- W3176777755 hasPublicationYear "2021" @default.
- W3176777755 type Work @default.
- W3176777755 sameAs 3176777755 @default.
- W3176777755 citedByCount "0" @default.
- W3176777755 crossrefType "journal-article" @default.
- W3176777755 hasAuthorship W3176777755A5001457383 @default.
- W3176777755 hasAuthorship W3176777755A5009569577 @default.
- W3176777755 hasAuthorship W3176777755A5042841773 @default.
- W3176777755 hasAuthorship W3176777755A5050985619 @default.
- W3176777755 hasAuthorship W3176777755A5056512831 @default.
- W3176777755 hasConcept C11413529 @default.
- W3176777755 hasConcept C119857082 @default.
- W3176777755 hasConcept C126322002 @default.
- W3176777755 hasConcept C141071460 @default.
- W3176777755 hasConcept C146357865 @default.
- W3176777755 hasConcept C151730666 @default.
- W3176777755 hasConcept C154945302 @default.
- W3176777755 hasConcept C159110652 @default.
- W3176777755 hasConcept C160798450 @default.
- W3176777755 hasConcept C169258074 @default.
- W3176777755 hasConcept C2776909242 @default.
- W3176777755 hasConcept C2778019345 @default.
- W3176777755 hasConcept C2780091936 @default.
- W3176777755 hasConcept C3019894029 @default.
- W3176777755 hasConcept C33923547 @default.
- W3176777755 hasConcept C35405484 @default.
- W3176777755 hasConcept C41008148 @default.
- W3176777755 hasConcept C46686674 @default.
- W3176777755 hasConcept C50382708 @default.
- W3176777755 hasConcept C70153297 @default.
- W3176777755 hasConcept C71924100 @default.
- W3176777755 hasConcept C86803240 @default.
- W3176777755 hasConceptScore W3176777755C11413529 @default.
- W3176777755 hasConceptScore W3176777755C119857082 @default.
- W3176777755 hasConceptScore W3176777755C126322002 @default.
- W3176777755 hasConceptScore W3176777755C141071460 @default.
- W3176777755 hasConceptScore W3176777755C146357865 @default.
- W3176777755 hasConceptScore W3176777755C151730666 @default.
- W3176777755 hasConceptScore W3176777755C154945302 @default.
- W3176777755 hasConceptScore W3176777755C159110652 @default.
- W3176777755 hasConceptScore W3176777755C160798450 @default.
- W3176777755 hasConceptScore W3176777755C169258074 @default.
- W3176777755 hasConceptScore W3176777755C2776909242 @default.
- W3176777755 hasConceptScore W3176777755C2778019345 @default.
- W3176777755 hasConceptScore W3176777755C2780091936 @default.
- W3176777755 hasConceptScore W3176777755C3019894029 @default.
- W3176777755 hasConceptScore W3176777755C33923547 @default.
- W3176777755 hasConceptScore W3176777755C35405484 @default.
- W3176777755 hasConceptScore W3176777755C41008148 @default.
- W3176777755 hasConceptScore W3176777755C46686674 @default.
- W3176777755 hasConceptScore W3176777755C50382708 @default.
- W3176777755 hasConceptScore W3176777755C70153297 @default.
- W3176777755 hasConceptScore W3176777755C71924100 @default.
- W3176777755 hasConceptScore W3176777755C86803240 @default.
- W3176777755 hasIssue "8" @default.
- W3176777755 hasLocation W31767777551 @default.
- W3176777755 hasOpenAccess W3176777755 @default.
- W3176777755 hasPrimaryLocation W31767777551 @default.
- W3176777755 hasRelatedWork W1907994617 @default.
- W3176777755 hasRelatedWork W2588997912 @default.
- W3176777755 hasRelatedWork W2801031105 @default.
- W3176777755 hasRelatedWork W2892692544 @default.
- W3176777755 hasRelatedWork W2910644941 @default.
- W3176777755 hasRelatedWork W2952617602 @default.
- W3176777755 hasRelatedWork W2982441856 @default.
- W3176777755 hasRelatedWork W3026180013 @default.
- W3176777755 hasRelatedWork W3030920224 @default.
- W3176777755 hasRelatedWork W3080742959 @default.
- W3176777755 hasRelatedWork W3157736353 @default.
- W3176777755 hasRelatedWork W3164495597 @default.
- W3176777755 hasRelatedWork W3185189119 @default.
- W3176777755 hasRelatedWork W3185393251 @default.
- W3176777755 hasRelatedWork W3186377337 @default.
- W3176777755 hasRelatedWork W3189003887 @default.
- W3176777755 hasRelatedWork W3198847044 @default.
- W3176777755 hasRelatedWork W3199596520 @default.
- W3176777755 hasRelatedWork W3200476736 @default.
- W3176777755 hasRelatedWork W3207799808 @default.
- W3176777755 hasVolume "59" @default.
- W3176777755 isParatext "false" @default.
- W3176777755 isRetracted "false" @default.
- W3176777755 magId "3176777755" @default.
- W3176777755 workType "article" @default.