Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176865114> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3176865114 abstract "<p>The importance of knowing and representing rural and urban development in water management is vital for its sustainability.&#160; An essential part of the management required that stakeholders are more aware of the consequences of decisions and in some way, can link decisions towards sustainability.&#160; For this, a mobile app serious game called Water Citizens has been proposed as knowledge dissemination and to provide a better understanding of the way decisions affect Sustainable Development Goals (SDGs). A complex model of a pilot region (Combeima in Ibague, Colombia) has been developed, and the model results are few into equations to estimate fluctuations of SDGs in the region. Running this complex model in real-time, for a mobile application, requires an extensive high-performance computing system linked to large and complex network setup. To solve this problem, a fast yet accurate surrogate model is proposed.</p><p>Therefore, this study contemplates an analysis of methods to forecast sustainable development indicators evaluated through climate change scenarios for a period between 1989-2039. The proposed scenarios associated the public health, livestock, agriculture, engineering, education and environment sectors with climate variables, climate change projections, land cover and land use, water demands (domestic, agricultural and livestock) and water quality (BOD and TSS). Generating the possibility that each player can make decisions that represent the actions that affect or contribute to the demand, availability and quality of water in the region.</p><p>Consequently, a set of indicators were selected to recreate the dimensions of each sector and reflect its relationship with the Sustainable Development Objectives, as opposed to the decisions made by each player. In addition, three categories were considered for the levels of sustainability: low (0.0 - 0.33), medium (0.34 - 0.66) and high (0.67 - 1.0) for the calculated SDG values.&#160;</p><p>Self-learning techniques have been employed in the analysis of decision-making problems. In this study, the nearest K neighbours (k-NN) and a multilayer perceptron network (MLP) were used. Through an analysis based on the responses of the players and sustainability indexes, a multiple correlation analysis was developed in order to consolidate the learning dataset, which was randomly partitioned in proportions 0.7 and 0.3 for the training and test subsets respectively. Subsequently, the model fit and performance was carried out, analysing the MSE error metric and confusion matrix.</p><p>Finally, the results of this study will allow to determine the potential of supervised learning models as a decision-making tool for the evaluation of sustainable development, as well as to obtain a better abstraction and representation of the water resource to the challenges related to climate adaptation and water sustainability measures of citizen action, besides generating new approaches for the use of artificial intelligence in land use planning and climate adaptation processes.</p>" @default.
- W3176865114 created "2021-07-05" @default.
- W3176865114 creator A5020526773 @default.
- W3176865114 creator A5045460100 @default.
- W3176865114 creator A5050322400 @default.
- W3176865114 creator A5076608911 @default.
- W3176865114 date "2021-03-04" @default.
- W3176865114 modified "2023-09-26" @default.
- W3176865114 title "A Machine Learning Sustainable Development Goals Model for Water Resources Serious Gaming. Case Study:  Combeima River, Colombia." @default.
- W3176865114 doi "https://doi.org/10.5194/egusphere-egu21-13929" @default.
- W3176865114 hasPublicationYear "2021" @default.
- W3176865114 type Work @default.
- W3176865114 sameAs 3176865114 @default.
- W3176865114 citedByCount "0" @default.
- W3176865114 crossrefType "posted-content" @default.
- W3176865114 hasAuthorship W3176865114A5020526773 @default.
- W3176865114 hasAuthorship W3176865114A5045460100 @default.
- W3176865114 hasAuthorship W3176865114A5050322400 @default.
- W3176865114 hasAuthorship W3176865114A5076608911 @default.
- W3176865114 hasConcept C107826830 @default.
- W3176865114 hasConcept C111472728 @default.
- W3176865114 hasConcept C118518473 @default.
- W3176865114 hasConcept C132651083 @default.
- W3176865114 hasConcept C134560507 @default.
- W3176865114 hasConcept C138885662 @default.
- W3176865114 hasConcept C144133560 @default.
- W3176865114 hasConcept C153823671 @default.
- W3176865114 hasConcept C162324750 @default.
- W3176865114 hasConcept C166957645 @default.
- W3176865114 hasConcept C175605778 @default.
- W3176865114 hasConcept C17744445 @default.
- W3176865114 hasConcept C18903297 @default.
- W3176865114 hasConcept C199539241 @default.
- W3176865114 hasConcept C205649164 @default.
- W3176865114 hasConcept C2779530757 @default.
- W3176865114 hasConcept C39432304 @default.
- W3176865114 hasConcept C41008148 @default.
- W3176865114 hasConcept C552854447 @default.
- W3176865114 hasConcept C66204764 @default.
- W3176865114 hasConcept C86803240 @default.
- W3176865114 hasConcept C91375879 @default.
- W3176865114 hasConceptScore W3176865114C107826830 @default.
- W3176865114 hasConceptScore W3176865114C111472728 @default.
- W3176865114 hasConceptScore W3176865114C118518473 @default.
- W3176865114 hasConceptScore W3176865114C132651083 @default.
- W3176865114 hasConceptScore W3176865114C134560507 @default.
- W3176865114 hasConceptScore W3176865114C138885662 @default.
- W3176865114 hasConceptScore W3176865114C144133560 @default.
- W3176865114 hasConceptScore W3176865114C153823671 @default.
- W3176865114 hasConceptScore W3176865114C162324750 @default.
- W3176865114 hasConceptScore W3176865114C166957645 @default.
- W3176865114 hasConceptScore W3176865114C175605778 @default.
- W3176865114 hasConceptScore W3176865114C17744445 @default.
- W3176865114 hasConceptScore W3176865114C18903297 @default.
- W3176865114 hasConceptScore W3176865114C199539241 @default.
- W3176865114 hasConceptScore W3176865114C205649164 @default.
- W3176865114 hasConceptScore W3176865114C2779530757 @default.
- W3176865114 hasConceptScore W3176865114C39432304 @default.
- W3176865114 hasConceptScore W3176865114C41008148 @default.
- W3176865114 hasConceptScore W3176865114C552854447 @default.
- W3176865114 hasConceptScore W3176865114C66204764 @default.
- W3176865114 hasConceptScore W3176865114C86803240 @default.
- W3176865114 hasConceptScore W3176865114C91375879 @default.
- W3176865114 hasLocation W31768651141 @default.
- W3176865114 hasOpenAccess W3176865114 @default.
- W3176865114 hasPrimaryLocation W31768651141 @default.
- W3176865114 hasRelatedWork W1022106 @default.
- W3176865114 hasRelatedWork W10833304 @default.
- W3176865114 hasRelatedWork W2052880 @default.
- W3176865114 hasRelatedWork W3836493 @default.
- W3176865114 hasRelatedWork W5513108 @default.
- W3176865114 hasRelatedWork W6910608 @default.
- W3176865114 hasRelatedWork W7312546 @default.
- W3176865114 hasRelatedWork W8408371 @default.
- W3176865114 hasRelatedWork W8866576 @default.
- W3176865114 hasRelatedWork W9233195 @default.
- W3176865114 isParatext "false" @default.
- W3176865114 isRetracted "false" @default.
- W3176865114 magId "3176865114" @default.
- W3176865114 workType "article" @default.