Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176874159> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3176874159 endingPage "272" @default.
- W3176874159 startingPage "264" @default.
- W3176874159 abstract "We propose a multiscale spatio-temporal graph convolutional network (MST-GCN) approach to learn the left ventricular (LV) motion patterns from cardiac MR image sequences. The MST-GCN follows an encoder-decoder framework. The encoder uses a sequence of multiscale graph computation units (MGCUs). The myocardial geometry is represented as a graph. The network models the internal relations of the graph nodes via feature extraction at different scales and fuses the feature across scales to form a global representation of the input cardiac motion. Based on this, the decoder employs a graph-based gated recurrent unit (G-GRU) to predict future cardiac motion. We show that the MST-GCN can automatically quantify the spatio-temporal patterns in cardiac MR that characterise cardiac motion. Experiments are performed on mid-ventricular short-axis view cardiac MR image sequence from the UK Biobank dataset. We compare the performance of cardiac motion prediction of the proposed method with ten different architectures and parameter settings. Experiments show that the proposed method inputting node positions and node velocities with multiscale graphs achieves the best performance with a mean squared error of 0.25 pixel between the ground truth node locations and our prediction. We also show that the proposed method can estimate a number of motion-related metrics, including endocardial radii, thickness and strain which are useful for regional LV function assessment.KeywordsSpatio-temporal graph convolutional networksCardiac MRMotion analysis" @default.
- W3176874159 created "2021-07-05" @default.
- W3176874159 creator A5021981517 @default.
- W3176874159 creator A5028377995 @default.
- W3176874159 creator A5059823739 @default.
- W3176874159 creator A5077728082 @default.
- W3176874159 date "2021-01-01" @default.
- W3176874159 modified "2023-10-16" @default.
- W3176874159 title "Multiscale Graph Convolutional Networks for Cardiac Motion Analysis" @default.
- W3176874159 cites W2132401137 @default.
- W3176874159 cites W2805285736 @default.
- W3176874159 cites W2900206120 @default.
- W3176874159 cites W2963076818 @default.
- W3176874159 cites W3035545045 @default.
- W3176874159 cites W3041938303 @default.
- W3176874159 cites W3090174950 @default.
- W3176874159 cites W3091349938 @default.
- W3176874159 cites W3122152435 @default.
- W3176874159 cites W3164315505 @default.
- W3176874159 doi "https://doi.org/10.1007/978-3-030-78710-3_26" @default.
- W3176874159 hasPublicationYear "2021" @default.
- W3176874159 type Work @default.
- W3176874159 sameAs 3176874159 @default.
- W3176874159 citedByCount "4" @default.
- W3176874159 countsByYear W31768741592022 @default.
- W3176874159 countsByYear W31768741592023 @default.
- W3176874159 crossrefType "book-chapter" @default.
- W3176874159 hasAuthorship W3176874159A5021981517 @default.
- W3176874159 hasAuthorship W3176874159A5028377995 @default.
- W3176874159 hasAuthorship W3176874159A5059823739 @default.
- W3176874159 hasAuthorship W3176874159A5077728082 @default.
- W3176874159 hasBestOaLocation W31768741592 @default.
- W3176874159 hasConcept C111919701 @default.
- W3176874159 hasConcept C11413529 @default.
- W3176874159 hasConcept C118505674 @default.
- W3176874159 hasConcept C121332964 @default.
- W3176874159 hasConcept C132525143 @default.
- W3176874159 hasConcept C153180895 @default.
- W3176874159 hasConcept C154945302 @default.
- W3176874159 hasConcept C31972630 @default.
- W3176874159 hasConcept C41008148 @default.
- W3176874159 hasConcept C45374587 @default.
- W3176874159 hasConcept C62520636 @default.
- W3176874159 hasConcept C62611344 @default.
- W3176874159 hasConcept C80444323 @default.
- W3176874159 hasConceptScore W3176874159C111919701 @default.
- W3176874159 hasConceptScore W3176874159C11413529 @default.
- W3176874159 hasConceptScore W3176874159C118505674 @default.
- W3176874159 hasConceptScore W3176874159C121332964 @default.
- W3176874159 hasConceptScore W3176874159C132525143 @default.
- W3176874159 hasConceptScore W3176874159C153180895 @default.
- W3176874159 hasConceptScore W3176874159C154945302 @default.
- W3176874159 hasConceptScore W3176874159C31972630 @default.
- W3176874159 hasConceptScore W3176874159C41008148 @default.
- W3176874159 hasConceptScore W3176874159C45374587 @default.
- W3176874159 hasConceptScore W3176874159C62520636 @default.
- W3176874159 hasConceptScore W3176874159C62611344 @default.
- W3176874159 hasConceptScore W3176874159C80444323 @default.
- W3176874159 hasLocation W31768741591 @default.
- W3176874159 hasLocation W31768741592 @default.
- W3176874159 hasOpenAccess W3176874159 @default.
- W3176874159 hasPrimaryLocation W31768741591 @default.
- W3176874159 hasRelatedWork W1891287906 @default.
- W3176874159 hasRelatedWork W1969923398 @default.
- W3176874159 hasRelatedWork W2036807459 @default.
- W3176874159 hasRelatedWork W2058170566 @default.
- W3176874159 hasRelatedWork W2229312674 @default.
- W3176874159 hasRelatedWork W2353981025 @default.
- W3176874159 hasRelatedWork W2366615277 @default.
- W3176874159 hasRelatedWork W2755342338 @default.
- W3176874159 hasRelatedWork W2772917594 @default.
- W3176874159 hasRelatedWork W3116076068 @default.
- W3176874159 isParatext "false" @default.
- W3176874159 isRetracted "false" @default.
- W3176874159 magId "3176874159" @default.
- W3176874159 workType "book-chapter" @default.