Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176901177> ?p ?o ?g. }
- W3176901177 endingPage "105955" @default.
- W3176901177 startingPage "105955" @default.
- W3176901177 abstract ": K-complexes, as a significant indicator in sleep staging and sleep protection, are an important micro-event in sleep analysis. Clinically, K-complexes are recognized through the expert visual inspection of electroencephalogram (EEG) during sleep. Since this process is laborious and has high inter-observer variability, developing automated K-complex detection methods can alleviate the burden on clinicians while providing reliable recognition results. However, existing methods face the following issues. First, most work only identifies the K-complexes in stage 2, which requires distinguishing the sleep stages as the prerequisite for further events’ identification. Second, most approaches can only detect the occurrence of events without the ability to predict their location and duration, which are also essential to sleep analysis. : In this work, a novel hybrid expert scheme for K-complex detection is proposed by integrating signal morphology with expert knowledge into the decision-making process. To eliminate artifacts, and to minimize the individual variability in raw sleep EEG signals, the potential K-complex candidates are first screened by combining Teager energy operator (TEO) and personalized thresholds. Then, to distinguish signal shapes from background activity, a novel frame of filtering based on morphological filtering (MF) is devised to differentiate morphological components of K-complex waveforms from EEG series. Finally, K-complex waveforms are identified from the extracted morphological information by judgment rules, which are inspired by expert knowledge of micro-sleep events. : Detection performance is evaluated by its application on the public database MASS-C1 (Montreal archives of sleep studies cohort one) which includes the recordings of 19 healthy adults. The detection performance demonstrates an F-measure of 0.63 with a recall of 0.81 and a precision of 0.53 on average. The duration error between events and detections is 0.10 s. : The presented scheme has detected the occurrence of events. Meanwhile, it has recognized their locations and durations. The favorable results exhibit that the proposed scheme outperforms the state-of-the-art studies and has great potential to help release the burden of experts in sleep EEG analysis." @default.
- W3176901177 created "2021-07-05" @default.
- W3176901177 creator A5009024629 @default.
- W3176901177 creator A5017541508 @default.
- W3176901177 creator A5035606926 @default.
- W3176901177 creator A5038268246 @default.
- W3176901177 creator A5054759918 @default.
- W3176901177 creator A5063253432 @default.
- W3176901177 creator A5069168079 @default.
- W3176901177 creator A5083896168 @default.
- W3176901177 date "2021-04-01" @default.
- W3176901177 modified "2023-09-25" @default.
- W3176901177 title "An energy screening and morphology characterization-based hybrid expert scheme for automatic identification of micro-sleep event K-complex" @default.
- W3176901177 cites W1690323875 @default.
- W3176901177 cites W1969231641 @default.
- W3176901177 cites W1974936856 @default.
- W3176901177 cites W1976293334 @default.
- W3176901177 cites W1983256092 @default.
- W3176901177 cites W1996425218 @default.
- W3176901177 cites W2012533813 @default.
- W3176901177 cites W2013688201 @default.
- W3176901177 cites W2015076179 @default.
- W3176901177 cites W2016429181 @default.
- W3176901177 cites W2018916364 @default.
- W3176901177 cites W2035831621 @default.
- W3176901177 cites W2041981196 @default.
- W3176901177 cites W2046425429 @default.
- W3176901177 cites W2083355945 @default.
- W3176901177 cites W2086162146 @default.
- W3176901177 cites W2105234237 @default.
- W3176901177 cites W2132196080 @default.
- W3176901177 cites W2138371115 @default.
- W3176901177 cites W2293080548 @default.
- W3176901177 cites W2316598325 @default.
- W3176901177 cites W2344142373 @default.
- W3176901177 cites W2466852614 @default.
- W3176901177 cites W2474889045 @default.
- W3176901177 cites W2525537354 @default.
- W3176901177 cites W2566067878 @default.
- W3176901177 cites W2782079669 @default.
- W3176901177 cites W2889997883 @default.
- W3176901177 cites W2900868701 @default.
- W3176901177 cites W2903696695 @default.
- W3176901177 cites W2917266614 @default.
- W3176901177 cites W2938174245 @default.
- W3176901177 cites W2987709164 @default.
- W3176901177 cites W2996637812 @default.
- W3176901177 cites W3017176402 @default.
- W3176901177 cites W3042250301 @default.
- W3176901177 cites W828992678 @default.
- W3176901177 doi "https://doi.org/10.1016/j.cmpb.2021.105955" @default.
- W3176901177 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33556760" @default.
- W3176901177 hasPublicationYear "2021" @default.
- W3176901177 type Work @default.
- W3176901177 sameAs 3176901177 @default.
- W3176901177 citedByCount "1" @default.
- W3176901177 countsByYear W31769011772023 @default.
- W3176901177 crossrefType "journal-article" @default.
- W3176901177 hasAuthorship W3176901177A5009024629 @default.
- W3176901177 hasAuthorship W3176901177A5017541508 @default.
- W3176901177 hasAuthorship W3176901177A5035606926 @default.
- W3176901177 hasAuthorship W3176901177A5038268246 @default.
- W3176901177 hasAuthorship W3176901177A5054759918 @default.
- W3176901177 hasAuthorship W3176901177A5063253432 @default.
- W3176901177 hasAuthorship W3176901177A5069168079 @default.
- W3176901177 hasAuthorship W3176901177A5083896168 @default.
- W3176901177 hasConcept C105795698 @default.
- W3176901177 hasConcept C111919701 @default.
- W3176901177 hasConcept C116834253 @default.
- W3176901177 hasConcept C118552586 @default.
- W3176901177 hasConcept C119857082 @default.
- W3176901177 hasConcept C124101348 @default.
- W3176901177 hasConcept C126042441 @default.
- W3176901177 hasConcept C153180895 @default.
- W3176901177 hasConcept C154945302 @default.
- W3176901177 hasConcept C186370098 @default.
- W3176901177 hasConcept C197424946 @default.
- W3176901177 hasConcept C2775841894 @default.
- W3176901177 hasConcept C2778205975 @default.
- W3176901177 hasConcept C2910364982 @default.
- W3176901177 hasConcept C33923547 @default.
- W3176901177 hasConcept C41008148 @default.
- W3176901177 hasConcept C522805319 @default.
- W3176901177 hasConcept C554190296 @default.
- W3176901177 hasConcept C58328972 @default.
- W3176901177 hasConcept C59822182 @default.
- W3176901177 hasConcept C71924100 @default.
- W3176901177 hasConcept C76155785 @default.
- W3176901177 hasConcept C86803240 @default.
- W3176901177 hasConcept C98045186 @default.
- W3176901177 hasConceptScore W3176901177C105795698 @default.
- W3176901177 hasConceptScore W3176901177C111919701 @default.
- W3176901177 hasConceptScore W3176901177C116834253 @default.
- W3176901177 hasConceptScore W3176901177C118552586 @default.
- W3176901177 hasConceptScore W3176901177C119857082 @default.
- W3176901177 hasConceptScore W3176901177C124101348 @default.
- W3176901177 hasConceptScore W3176901177C126042441 @default.
- W3176901177 hasConceptScore W3176901177C153180895 @default.