Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176902952> ?p ?o ?g. }
- W3176902952 abstract "Efficient detection of thin objects, from stationary or moving images, is significant in a variety of research areas. These research areas include but are not limited to electric power line detection systems, sperm tail detection for clinical sperm research, mooring lines detection, road-lane line detection for autonomous vehicles, and cracks detection for the integrity assessment of building structures. However, the detection of thin objects is a challenging computer vision task owing to the slimmer and less compact nature of these objects. Moreover, the complexity present in certain images, such as the background clutter, further adds to this problem of accurately detecting thin objects. In this work, we investigate a series of state-of-the-art deep learning detectors for thin objects’ detection. The detectors examined in this work were: EfficientDet, YOLOv5 and U-Net. The experimental results of this study reveal that generic state-of-the-art deep detectors are not suitable for detecting thin objects due to their reliance on coarse bounding boxes and/or excessive pixel-level computations while the application-specific detectors possess poor generalization capabilities and do not work accurately outside their domains. These empirical findings indicate the necessity of the identification of critical factors affecting thin objects detection and the subsequent design of a generic thin objects’ detector." @default.
- W3176902952 created "2021-07-05" @default.
- W3176902952 creator A5023378447 @default.
- W3176902952 creator A5028915945 @default.
- W3176902952 creator A5038826600 @default.
- W3176902952 creator A5051109858 @default.
- W3176902952 creator A5083253222 @default.
- W3176902952 date "2021-04-23" @default.
- W3176902952 modified "2023-09-23" @default.
- W3176902952 title "Deep Learning Object Detection Techniques for Thin Objects in Computer Vision: An Experimental Investigation" @default.
- W3176902952 cites W1689909837 @default.
- W3176902952 cites W2009933819 @default.
- W3176902952 cites W2010089350 @default.
- W3176902952 cites W2042105889 @default.
- W3176902952 cites W2068730032 @default.
- W3176902952 cites W2095905764 @default.
- W3176902952 cites W2102605133 @default.
- W3176902952 cites W2109255472 @default.
- W3176902952 cites W2145023731 @default.
- W3176902952 cites W2159132531 @default.
- W3176902952 cites W2171437257 @default.
- W3176902952 cites W2498148408 @default.
- W3176902952 cites W2565639579 @default.
- W3176902952 cites W2570343428 @default.
- W3176902952 cites W2770233088 @default.
- W3176902952 cites W2772993772 @default.
- W3176902952 cites W2782480863 @default.
- W3176902952 cites W2884367402 @default.
- W3176902952 cites W2887597701 @default.
- W3176902952 cites W2895820365 @default.
- W3176902952 cites W2903088819 @default.
- W3176902952 cites W2912350898 @default.
- W3176902952 cites W2941356554 @default.
- W3176902952 cites W2943055722 @default.
- W3176902952 cites W2948202452 @default.
- W3176902952 cites W2963813458 @default.
- W3176902952 cites W2963873508 @default.
- W3176902952 cites W2964199920 @default.
- W3176902952 cites W2976685420 @default.
- W3176902952 cites W2995724453 @default.
- W3176902952 cites W2999092571 @default.
- W3176902952 cites W3034971973 @default.
- W3176902952 cites W3082127514 @default.
- W3176902952 cites W4248033261 @default.
- W3176902952 doi "https://doi.org/10.1109/iccar52225.2021.9463487" @default.
- W3176902952 hasPublicationYear "2021" @default.
- W3176902952 type Work @default.
- W3176902952 sameAs 3176902952 @default.
- W3176902952 citedByCount "5" @default.
- W3176902952 countsByYear W31769029522021 @default.
- W3176902952 countsByYear W31769029522022 @default.
- W3176902952 countsByYear W31769029522023 @default.
- W3176902952 crossrefType "proceedings-article" @default.
- W3176902952 hasAuthorship W3176902952A5023378447 @default.
- W3176902952 hasAuthorship W3176902952A5028915945 @default.
- W3176902952 hasAuthorship W3176902952A5038826600 @default.
- W3176902952 hasAuthorship W3176902952A5051109858 @default.
- W3176902952 hasAuthorship W3176902952A5083253222 @default.
- W3176902952 hasConcept C11413529 @default.
- W3176902952 hasConcept C132094186 @default.
- W3176902952 hasConcept C153180895 @default.
- W3176902952 hasConcept C154945302 @default.
- W3176902952 hasConcept C160633673 @default.
- W3176902952 hasConcept C2776151529 @default.
- W3176902952 hasConcept C31972630 @default.
- W3176902952 hasConcept C41008148 @default.
- W3176902952 hasConcept C45374587 @default.
- W3176902952 hasConcept C554190296 @default.
- W3176902952 hasConcept C63584917 @default.
- W3176902952 hasConcept C76155785 @default.
- W3176902952 hasConcept C94915269 @default.
- W3176902952 hasConceptScore W3176902952C11413529 @default.
- W3176902952 hasConceptScore W3176902952C132094186 @default.
- W3176902952 hasConceptScore W3176902952C153180895 @default.
- W3176902952 hasConceptScore W3176902952C154945302 @default.
- W3176902952 hasConceptScore W3176902952C160633673 @default.
- W3176902952 hasConceptScore W3176902952C2776151529 @default.
- W3176902952 hasConceptScore W3176902952C31972630 @default.
- W3176902952 hasConceptScore W3176902952C41008148 @default.
- W3176902952 hasConceptScore W3176902952C45374587 @default.
- W3176902952 hasConceptScore W3176902952C554190296 @default.
- W3176902952 hasConceptScore W3176902952C63584917 @default.
- W3176902952 hasConceptScore W3176902952C76155785 @default.
- W3176902952 hasConceptScore W3176902952C94915269 @default.
- W3176902952 hasLocation W31769029521 @default.
- W3176902952 hasOpenAccess W3176902952 @default.
- W3176902952 hasPrimaryLocation W31769029521 @default.
- W3176902952 hasRelatedWork W1489399123 @default.
- W3176902952 hasRelatedWork W1985086688 @default.
- W3176902952 hasRelatedWork W2090093270 @default.
- W3176902952 hasRelatedWork W2161193411 @default.
- W3176902952 hasRelatedWork W2309573947 @default.
- W3176902952 hasRelatedWork W2357365693 @default.
- W3176902952 hasRelatedWork W2739874619 @default.
- W3176902952 hasRelatedWork W4241527529 @default.
- W3176902952 hasRelatedWork W4312857205 @default.
- W3176902952 hasRelatedWork W2183878799 @default.
- W3176902952 isParatext "false" @default.
- W3176902952 isRetracted "false" @default.
- W3176902952 magId "3176902952" @default.