Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176923149> ?p ?o ?g. }
- W3176923149 abstract "Abstract Natural Language Processing (NLP) is one of the most captivating applications of Deep Learning. In this survey, we consider how the Data Augmentation training strategy can aid in its development. We begin with the major motifs of Data Augmentation summarized into strengthening local decision boundaries, brute force training, causality and counterfactual examples, and the distinction between meaning and form. We follow these motifs with a concrete list of augmentation frameworks that have been developed for text data. Deep Learning generally struggles with the measurement of generalization and characterization of overfitting. We highlight studies that cover how augmentations can construct test sets for generalization. NLP is at an early stage in applying Data Augmentation compared to Computer Vision. We highlight the key differences and promising ideas that have yet to be tested in NLP. For the sake of practical implementation, we describe tools that facilitate Data Augmentation such as the use of consistency regularization, controllers, and offline and online augmentation pipelines, to preview a few. Finally, we discuss interesting topics around Data Augmentation in NLP such as task-specific augmentations, the use of prior knowledge in self-supervised learning versus Data Augmentation, intersections with transfer and multi-task learning, and ideas for AI-GAs (AI-Generating Algorithms). We hope this paper inspires further research interest in Text Data Augmentation." @default.
- W3176923149 created "2021-07-05" @default.
- W3176923149 creator A5051577117 @default.
- W3176923149 creator A5057260089 @default.
- W3176923149 creator A5089170562 @default.
- W3176923149 date "2021-07-19" @default.
- W3176923149 modified "2023-10-14" @default.
- W3176923149 title "Text Data Augmentation for Deep Learning" @default.
- W3176923149 cites W1959220275 @default.
- W3176923149 cites W2081580037 @default.
- W3176923149 cites W2096945460 @default.
- W3176923149 cites W2108598243 @default.
- W3176923149 cites W2148143831 @default.
- W3176923149 cites W2395579298 @default.
- W3176923149 cites W2396881363 @default.
- W3176923149 cites W2561300216 @default.
- W3176923149 cites W2603666613 @default.
- W3176923149 cites W2889326414 @default.
- W3176923149 cites W2891177506 @default.
- W3176923149 cites W2905266130 @default.
- W3176923149 cites W2923014074 @default.
- W3176923149 cites W2936503027 @default.
- W3176923149 cites W2949736877 @default.
- W3176923149 cites W2949849869 @default.
- W3176923149 cites W2951286828 @default.
- W3176923149 cites W2954700257 @default.
- W3176923149 cites W2954996726 @default.
- W3176923149 cites W2962770929 @default.
- W3176923149 cites W2963341956 @default.
- W3176923149 cites W2963961878 @default.
- W3176923149 cites W2966284335 @default.
- W3176923149 cites W2970641574 @default.
- W3176923149 cites W2971296908 @default.
- W3176923149 cites W2996851481 @default.
- W3176923149 cites W3003265726 @default.
- W3176923149 cites W3011411500 @default.
- W3176923149 cites W3013605954 @default.
- W3176923149 cites W3034238904 @default.
- W3176923149 cites W3034275286 @default.
- W3176923149 cites W3034723486 @default.
- W3176923149 cites W3034830866 @default.
- W3176923149 cites W3035160371 @default.
- W3176923149 cites W3035352537 @default.
- W3176923149 cites W3035452548 @default.
- W3176923149 cites W3035507081 @default.
- W3176923149 cites W3035524453 @default.
- W3176923149 cites W3035643691 @default.
- W3176923149 cites W3035682985 @default.
- W3176923149 cites W3035739162 @default.
- W3176923149 cites W3041467169 @default.
- W3176923149 cites W3097975205 @default.
- W3176923149 cites W3099396524 @default.
- W3176923149 cites W3101065397 @default.
- W3176923149 cites W3105604018 @default.
- W3176923149 cites W3105959138 @default.
- W3176923149 cites W3109620645 @default.
- W3176923149 cites W3121263745 @default.
- W3176923149 cites W3135325101 @default.
- W3176923149 cites W3135427360 @default.
- W3176923149 cites W3135588948 @default.
- W3176923149 cites W3146365155 @default.
- W3176923149 cites W3152621806 @default.
- W3176923149 cites W3153427360 @default.
- W3176923149 cites W3153451655 @default.
- W3176923149 cites W3154603286 @default.
- W3176923149 cites W3155682407 @default.
- W3176923149 cites W3155807546 @default.
- W3176923149 cites W3164045210 @default.
- W3176923149 cites W3169001897 @default.
- W3176923149 cites W3169141681 @default.
- W3176923149 cites W3169283738 @default.
- W3176923149 cites W3169841173 @default.
- W3176923149 cites W3172642864 @default.
- W3176923149 cites W3172806051 @default.
- W3176923149 cites W3174828871 @default.
- W3176923149 cites W3180562345 @default.
- W3176923149 cites W3203259592 @default.
- W3176923149 cites W4205927329 @default.
- W3176923149 cites W4205991051 @default.
- W3176923149 cites W4206214875 @default.
- W3176923149 cites W4206410067 @default.
- W3176923149 cites W4206636317 @default.
- W3176923149 cites W4294106961 @default.
- W3176923149 cites W4294875919 @default.
- W3176923149 doi "https://doi.org/10.1186/s40537-021-00492-0" @default.
- W3176923149 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8287113" @default.
- W3176923149 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34306963" @default.
- W3176923149 hasPublicationYear "2021" @default.
- W3176923149 type Work @default.
- W3176923149 sameAs 3176923149 @default.
- W3176923149 citedByCount "646" @default.
- W3176923149 countsByYear W31769231492020 @default.
- W3176923149 countsByYear W31769231492021 @default.
- W3176923149 countsByYear W31769231492022 @default.
- W3176923149 countsByYear W31769231492023 @default.
- W3176923149 crossrefType "journal-article" @default.
- W3176923149 hasAuthorship W3176923149A5051577117 @default.
- W3176923149 hasAuthorship W3176923149A5057260089 @default.
- W3176923149 hasAuthorship W3176923149A5089170562 @default.
- W3176923149 hasBestOaLocation W31769231491 @default.