Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176943905> ?p ?o ?g. }
- W3176943905 abstract "Abstract Background Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. Methods A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. Results 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. Conclusions Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451." @default.
- W3176943905 created "2021-07-05" @default.
- W3176943905 creator A5002165016 @default.
- W3176943905 creator A5002622930 @default.
- W3176943905 creator A5004628554 @default.
- W3176943905 creator A5004835573 @default.
- W3176943905 creator A5008447327 @default.
- W3176943905 creator A5008546543 @default.
- W3176943905 creator A5009619586 @default.
- W3176943905 creator A5010696649 @default.
- W3176943905 creator A5012512225 @default.
- W3176943905 creator A5014530494 @default.
- W3176943905 creator A5014713161 @default.
- W3176943905 creator A5017189713 @default.
- W3176943905 creator A5018084936 @default.
- W3176943905 creator A5019432387 @default.
- W3176943905 creator A5021025682 @default.
- W3176943905 creator A5021849814 @default.
- W3176943905 creator A5024361606 @default.
- W3176943905 creator A5025235476 @default.
- W3176943905 creator A5029680202 @default.
- W3176943905 creator A5030354170 @default.
- W3176943905 creator A5031160333 @default.
- W3176943905 creator A5031289449 @default.
- W3176943905 creator A5032246756 @default.
- W3176943905 creator A5033128777 @default.
- W3176943905 creator A5035110775 @default.
- W3176943905 creator A5037152663 @default.
- W3176943905 creator A5040689704 @default.
- W3176943905 creator A5042374620 @default.
- W3176943905 creator A5046073740 @default.
- W3176943905 creator A5047250571 @default.
- W3176943905 creator A5048973565 @default.
- W3176943905 creator A5052588802 @default.
- W3176943905 creator A5053621010 @default.
- W3176943905 creator A5056667390 @default.
- W3176943905 creator A5058641800 @default.
- W3176943905 creator A5058694014 @default.
- W3176943905 creator A5063480612 @default.
- W3176943905 creator A5064776829 @default.
- W3176943905 creator A5065259336 @default.
- W3176943905 creator A5066208050 @default.
- W3176943905 creator A5066669117 @default.
- W3176943905 creator A5069636763 @default.
- W3176943905 creator A5070310872 @default.
- W3176943905 creator A5073090312 @default.
- W3176943905 creator A5076723856 @default.
- W3176943905 creator A5078487792 @default.
- W3176943905 creator A5085780698 @default.
- W3176943905 creator A5086289939 @default.
- W3176943905 date "2021-08-17" @default.
- W3176943905 modified "2023-10-18" @default.
- W3176943905 title "Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort" @default.
- W3176943905 cites W1803784511 @default.
- W3176943905 cites W1898928487 @default.
- W3176943905 cites W2005357317 @default.
- W3176943905 cites W2046945713 @default.
- W3176943905 cites W2093274439 @default.
- W3176943905 cites W2096054719 @default.
- W3176943905 cites W2149033360 @default.
- W3176943905 cites W2157355630 @default.
- W3176943905 cites W2408866005 @default.
- W3176943905 cites W2485759373 @default.
- W3176943905 cites W2620241325 @default.
- W3176943905 cites W2769886493 @default.
- W3176943905 cites W2944434778 @default.
- W3176943905 cites W2999600747 @default.
- W3176943905 cites W3008090866 @default.
- W3176943905 cites W3013816672 @default.
- W3176943905 cites W3014294089 @default.
- W3176943905 cites W3014797709 @default.
- W3176943905 cites W3015053717 @default.
- W3176943905 cites W3015303791 @default.
- W3176943905 cites W3016636325 @default.
- W3176943905 cites W3016638850 @default.
- W3176943905 cites W3016785135 @default.
- W3176943905 cites W3021823248 @default.
- W3176943905 cites W3022303900 @default.
- W3176943905 cites W3023997891 @default.
- W3176943905 cites W3024193040 @default.
- W3176943905 cites W3025283988 @default.
- W3176943905 cites W3028583791 @default.
- W3176943905 cites W3036288118 @default.
- W3176943905 cites W3089328061 @default.
- W3176943905 cites W3104735978 @default.
- W3176943905 cites W3116081414 @default.
- W3176943905 cites W3126015634 @default.
- W3176943905 cites W3140226555 @default.
- W3176943905 cites W3162895293 @default.
- W3176943905 doi "https://doi.org/10.1186/s13054-021-03720-4" @default.
- W3176943905 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8370055" @default.
- W3176943905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34404458" @default.
- W3176943905 hasPublicationYear "2021" @default.
- W3176943905 type Work @default.
- W3176943905 sameAs 3176943905 @default.
- W3176943905 citedByCount "33" @default.
- W3176943905 countsByYear W31769439052021 @default.
- W3176943905 countsByYear W31769439052022 @default.
- W3176943905 countsByYear W31769439052023 @default.
- W3176943905 crossrefType "journal-article" @default.