Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176943954> ?p ?o ?g. }
- W3176943954 endingPage "170" @default.
- W3176943954 startingPage "147" @default.
- W3176943954 abstract "Android malware attacks are tremendously increasing, and evasion techniques become more and more effective. For this reason, it is necessary to continuously improve the detection performances. With this paper, we wish to pursue this purpose with two contributions. On one hand, we aim at evaluating how improving machine learning-based malware detectors, and on the other hand, we investigate to which extent adversarial attacks can deteriorate the performances of the classifiers. Analysis of malware samples is performed using static and dynamic analysis. This paper proposes a framework for integrating both static and dynamic features trained on machine learning methods and deep neural network. On employing machine learning algorithms, we obtain an accuracy of 97.59% with static features using SVM, and 95.64% is reached with dynamic features using Random forest. Additionally, a 100% accuracy was obtained with CART and SVM using hybrid attributes (on combining relevant static and dynamic features). Further, using deep neural network models, experimental results showed an accuracy of 99.28% using static features, 94.61% using dynamic attributes, and 99.59% by combining both static and dynamic features (also known as multi-modal attributes). Besides, we evaluated the robustness of classifiers against evasion and poisoning attack. In particular comprehensive analysis was performed using permission, APIs, app components and system calls (especially n-grams of system calls). We noticed that the performances of the classifiers significantly dropped while simulating evasion attack using static features, and in some cases 100% of adversarial examples were wrongly labelled by the classification models. Additionally, we show that models trained using dynamic features are also vulnerable to attack, however they exhibit more resilience than a classifier built on static features." @default.
- W3176943954 created "2021-07-05" @default.
- W3176943954 creator A5012398892 @default.
- W3176943954 creator A5047521160 @default.
- W3176943954 creator A5048951071 @default.
- W3176943954 creator A5049377745 @default.
- W3176943954 creator A5054871157 @default.
- W3176943954 creator A5055449367 @default.
- W3176943954 creator A5057342577 @default.
- W3176943954 creator A5066768124 @default.
- W3176943954 creator A5078206430 @default.
- W3176943954 date "2021-06-26" @default.
- W3176943954 modified "2023-09-26" @default.
- W3176943954 title "Detection and robustness evaluation of android malware classifiers" @default.
- W3176943954 cites W1616720564 @default.
- W3176943954 cites W1893133781 @default.
- W3176943954 cites W1990649188 @default.
- W3176943954 cites W2010065958 @default.
- W3176943954 cites W2013109736 @default.
- W3176943954 cites W2024071684 @default.
- W3176943954 cites W2026875669 @default.
- W3176943954 cites W2041976134 @default.
- W3176943954 cites W2057787526 @default.
- W3176943954 cites W2070386561 @default.
- W3176943954 cites W2122672392 @default.
- W3176943954 cites W2215444025 @default.
- W3176943954 cites W2298292381 @default.
- W3176943954 cites W2318851192 @default.
- W3176943954 cites W2324464293 @default.
- W3176943954 cites W2343987812 @default.
- W3176943954 cites W2583329118 @default.
- W3176943954 cites W2599823825 @default.
- W3176943954 cites W2744095836 @default.
- W3176943954 cites W2753692828 @default.
- W3176943954 cites W2755633026 @default.
- W3176943954 cites W2774644650 @default.
- W3176943954 cites W2782729947 @default.
- W3176943954 cites W2783327762 @default.
- W3176943954 cites W2789983203 @default.
- W3176943954 cites W2792310543 @default.
- W3176943954 cites W2792716682 @default.
- W3176943954 cites W2795845996 @default.
- W3176943954 cites W2801888526 @default.
- W3176943954 cites W2810666735 @default.
- W3176943954 cites W2885070483 @default.
- W3176943954 cites W2898252236 @default.
- W3176943954 cites W2899776223 @default.
- W3176943954 cites W2900633536 @default.
- W3176943954 cites W2921667517 @default.
- W3176943954 cites W2963461515 @default.
- W3176943954 cites W2963777745 @default.
- W3176943954 cites W3002912819 @default.
- W3176943954 cites W3030531411 @default.
- W3176943954 cites W4247200422 @default.
- W3176943954 cites W4252735673 @default.
- W3176943954 doi "https://doi.org/10.1007/s11416-021-00390-2" @default.
- W3176943954 hasPublicationYear "2021" @default.
- W3176943954 type Work @default.
- W3176943954 sameAs 3176943954 @default.
- W3176943954 citedByCount "1" @default.
- W3176943954 countsByYear W31769439542022 @default.
- W3176943954 crossrefType "journal-article" @default.
- W3176943954 hasAuthorship W3176943954A5012398892 @default.
- W3176943954 hasAuthorship W3176943954A5047521160 @default.
- W3176943954 hasAuthorship W3176943954A5048951071 @default.
- W3176943954 hasAuthorship W3176943954A5049377745 @default.
- W3176943954 hasAuthorship W3176943954A5054871157 @default.
- W3176943954 hasAuthorship W3176943954A5055449367 @default.
- W3176943954 hasAuthorship W3176943954A5057342577 @default.
- W3176943954 hasAuthorship W3176943954A5066768124 @default.
- W3176943954 hasAuthorship W3176943954A5078206430 @default.
- W3176943954 hasConcept C104317684 @default.
- W3176943954 hasConcept C111919701 @default.
- W3176943954 hasConcept C119857082 @default.
- W3176943954 hasConcept C12267149 @default.
- W3176943954 hasConcept C124101348 @default.
- W3176943954 hasConcept C154945302 @default.
- W3176943954 hasConcept C169258074 @default.
- W3176943954 hasConcept C185592680 @default.
- W3176943954 hasConcept C199360897 @default.
- W3176943954 hasConcept C203014093 @default.
- W3176943954 hasConcept C2781251061 @default.
- W3176943954 hasConcept C2989133298 @default.
- W3176943954 hasConcept C38652104 @default.
- W3176943954 hasConcept C41008148 @default.
- W3176943954 hasConcept C50644808 @default.
- W3176943954 hasConcept C541664917 @default.
- W3176943954 hasConcept C55493867 @default.
- W3176943954 hasConcept C557433098 @default.
- W3176943954 hasConcept C63479239 @default.
- W3176943954 hasConcept C86803240 @default.
- W3176943954 hasConcept C8891405 @default.
- W3176943954 hasConcept C97686452 @default.
- W3176943954 hasConceptScore W3176943954C104317684 @default.
- W3176943954 hasConceptScore W3176943954C111919701 @default.
- W3176943954 hasConceptScore W3176943954C119857082 @default.
- W3176943954 hasConceptScore W3176943954C12267149 @default.
- W3176943954 hasConceptScore W3176943954C124101348 @default.