Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176967904> ?p ?o ?g. }
- W3176967904 endingPage "338799" @default.
- W3176967904 startingPage "338799" @default.
- W3176967904 abstract "In this study, a simple and effective method for accurate determination of lithium in brine samples was developed by the combination of laser induced breakdown spectroscopy (LIBS) and convolutional neural network (CNN). Our results clearly demonstrate that the use of CNN could efficiently overcome the complex matrix effects, and thus allows for on-site Li quantitative determination in brine samples by LIBS. Specifically, two CNN models with different input data (M-CNN with matrix emission lines, and DP-CNN with double Li lines) were constructed based on the primary matrix features on spectrum and Boltzmann equation, respectively. It was observed that DP-CNN model could greatly improve the accuracy of Li analysis. We also compared the quantitative analysis capabilities of DP-CNN model with partial least squares regression (PLSR) and principal component analysis-support vector regression (PCA-SVR) model, and the results clearly showed DP-CNN offers the best quantification results (higher accuracy and less matrix interference). Finally, five real brine samples were successfully analyzed by the proposed DP-CNN model, confirming by the average absolute error of the prediction of 0.28 mg L−1 and the average relative error of 3.48%. These results clearly demonstrate that input data plays an important role in the training of CNN model in LIBS analysis, and the proposed DP-CNN provides an effective approach to solve the matrix effects encountered in LIBS for Li measurement in brine samples." @default.
- W3176967904 created "2021-07-05" @default.
- W3176967904 creator A5008526770 @default.
- W3176967904 creator A5008981582 @default.
- W3176967904 creator A5032259339 @default.
- W3176967904 creator A5039412958 @default.
- W3176967904 creator A5042709519 @default.
- W3176967904 creator A5053165629 @default.
- W3176967904 creator A5081654328 @default.
- W3176967904 date "2021-09-01" @default.
- W3176967904 modified "2023-10-17" @default.
- W3176967904 title "Quantitative analysis of lithium in brine by laser-induced breakdown spectroscopy based on convolutional neural network" @default.
- W3176967904 cites W1974605344 @default.
- W3176967904 cites W1977502151 @default.
- W3176967904 cites W1979081352 @default.
- W3176967904 cites W2011456034 @default.
- W3176967904 cites W2016040544 @default.
- W3176967904 cites W2023680848 @default.
- W3176967904 cites W2035428748 @default.
- W3176967904 cites W2040392900 @default.
- W3176967904 cites W2092388540 @default.
- W3176967904 cites W2100495367 @default.
- W3176967904 cites W2102105059 @default.
- W3176967904 cites W2110350359 @default.
- W3176967904 cites W2127548927 @default.
- W3176967904 cites W2132355204 @default.
- W3176967904 cites W2152896958 @default.
- W3176967904 cites W2303853370 @default.
- W3176967904 cites W2318705411 @default.
- W3176967904 cites W2507917535 @default.
- W3176967904 cites W2625212076 @default.
- W3176967904 cites W2754083368 @default.
- W3176967904 cites W2757507637 @default.
- W3176967904 cites W2799995471 @default.
- W3176967904 cites W2806054644 @default.
- W3176967904 cites W2809578949 @default.
- W3176967904 cites W2884430236 @default.
- W3176967904 cites W2887414006 @default.
- W3176967904 cites W2889314834 @default.
- W3176967904 cites W2891541000 @default.
- W3176967904 cites W2899672222 @default.
- W3176967904 cites W2909516836 @default.
- W3176967904 cites W2910607034 @default.
- W3176967904 cites W2916972867 @default.
- W3176967904 cites W2961796193 @default.
- W3176967904 cites W2964396118 @default.
- W3176967904 cites W2979096086 @default.
- W3176967904 cites W2980121750 @default.
- W3176967904 cites W2981209987 @default.
- W3176967904 cites W2981512962 @default.
- W3176967904 cites W2982482221 @default.
- W3176967904 cites W2998401461 @default.
- W3176967904 cites W3008511810 @default.
- W3176967904 cites W3009346488 @default.
- W3176967904 cites W3016238410 @default.
- W3176967904 cites W3023707159 @default.
- W3176967904 cites W3036061391 @default.
- W3176967904 cites W3037235606 @default.
- W3176967904 cites W3039633062 @default.
- W3176967904 cites W3097989102 @default.
- W3176967904 cites W3101418925 @default.
- W3176967904 cites W3109229326 @default.
- W3176967904 cites W3110618811 @default.
- W3176967904 cites W3138044299 @default.
- W3176967904 cites W3158711593 @default.
- W3176967904 doi "https://doi.org/10.1016/j.aca.2021.338799" @default.
- W3176967904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34482868" @default.
- W3176967904 hasPublicationYear "2021" @default.
- W3176967904 type Work @default.
- W3176967904 sameAs 3176967904 @default.
- W3176967904 citedByCount "18" @default.
- W3176967904 countsByYear W31769679042021 @default.
- W3176967904 countsByYear W31769679042022 @default.
- W3176967904 countsByYear W31769679042023 @default.
- W3176967904 crossrefType "journal-article" @default.
- W3176967904 hasAuthorship W3176967904A5008526770 @default.
- W3176967904 hasAuthorship W3176967904A5008981582 @default.
- W3176967904 hasAuthorship W3176967904A5032259339 @default.
- W3176967904 hasAuthorship W3176967904A5039412958 @default.
- W3176967904 hasAuthorship W3176967904A5042709519 @default.
- W3176967904 hasAuthorship W3176967904A5053165629 @default.
- W3176967904 hasAuthorship W3176967904A5081654328 @default.
- W3176967904 hasConcept C106487976 @default.
- W3176967904 hasConcept C113196181 @default.
- W3176967904 hasConcept C119857082 @default.
- W3176967904 hasConcept C121332964 @default.
- W3176967904 hasConcept C153180895 @default.
- W3176967904 hasConcept C154945302 @default.
- W3176967904 hasConcept C178790620 @default.
- W3176967904 hasConcept C185592680 @default.
- W3176967904 hasConcept C186060115 @default.
- W3176967904 hasConcept C22354355 @default.
- W3176967904 hasConcept C27438332 @default.
- W3176967904 hasConcept C2776957854 @default.
- W3176967904 hasConcept C32891209 @default.
- W3176967904 hasConcept C41008148 @default.
- W3176967904 hasConcept C43617362 @default.
- W3176967904 hasConcept C50497907 @default.