Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177010161> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3177010161 abstract "Breast cancer or ductal carcinoma is prevalent in women and is the leading cause of women's death worldwide. Delaying breast cancer or tumor growth has long-term effects, can also become life-threatening. So the tumor should be identified as early as possible to control the growth and preventing to spread to other tissues. Several types of researches have been done to detect breast cancer early so that the treatment can be started to increase the chance of survival. A mammography procedure for early detection and diagnosis of breast cancer is commonly advised. There are so many techniques that are used for malignancy prediction. Using Artificial Intelligence-powered machine learning is widely recommended. Researches are conducted in machine learning to detect cancerous tumors in the human body. Mainly used algorithms which give high accuracy are SVM, naïve bays, decision trees, KNN. Deep learning, the machine learning sub-branch, can also be used to classify breast cancer. Deep learning is a method that is mostly used to clear, rectify, and detect machine learning errors or disadvantages. Convolutional Neural Networks are the perfect deep learning method for overcoming the drawbacks of machine learning in malignancy detection; however, other strategies such as a recurrent neural network and a deep belief network are being used to overcome the shortcomings of machine learning. As a consequence, using deep learning rather than machine learning yields better results. This review paper's primary motivation is to make budding researchers aware that breast cancer is a serious issue among women and we need to be swift in using different technologies to detect and to improve accuracy as efficiently as possible, it is very important to save our mothers, sisters, loved ones and our society from this dangerous predator. In this review paper, we have discussed all the techniques used by different authors." @default.
- W3177010161 created "2021-07-05" @default.
- W3177010161 creator A5025975407 @default.
- W3177010161 creator A5066086076 @default.
- W3177010161 creator A5078367395 @default.
- W3177010161 date "2021-06-03" @default.
- W3177010161 modified "2023-10-03" @default.
- W3177010161 title "Review: Breast Cancer Detection Using Deep Learning" @default.
- W3177010161 cites W2062874011 @default.
- W3177010161 cites W2338271170 @default.
- W3177010161 cites W2560195724 @default.
- W3177010161 cites W2791308775 @default.
- W3177010161 cites W2906593256 @default.
- W3177010161 cites W2908052439 @default.
- W3177010161 cites W2911117705 @default.
- W3177010161 cites W2936214295 @default.
- W3177010161 cites W2940859255 @default.
- W3177010161 cites W2952493603 @default.
- W3177010161 cites W2952523812 @default.
- W3177010161 cites W2954378368 @default.
- W3177010161 cites W2972835420 @default.
- W3177010161 cites W2979303080 @default.
- W3177010161 cites W2993303538 @default.
- W3177010161 cites W2997292990 @default.
- W3177010161 cites W2999243731 @default.
- W3177010161 cites W3002249558 @default.
- W3177010161 cites W3002446410 @default.
- W3177010161 cites W3004024346 @default.
- W3177010161 cites W3010105943 @default.
- W3177010161 cites W3023402959 @default.
- W3177010161 cites W3037889230 @default.
- W3177010161 cites W3082340096 @default.
- W3177010161 cites W3091819931 @default.
- W3177010161 cites W3111663579 @default.
- W3177010161 cites W3126637267 @default.
- W3177010161 doi "https://doi.org/10.1109/icoei51242.2021.9452835" @default.
- W3177010161 hasPublicationYear "2021" @default.
- W3177010161 type Work @default.
- W3177010161 sameAs 3177010161 @default.
- W3177010161 citedByCount "3" @default.
- W3177010161 countsByYear W31770101612022 @default.
- W3177010161 crossrefType "proceedings-article" @default.
- W3177010161 hasAuthorship W3177010161A5025975407 @default.
- W3177010161 hasAuthorship W3177010161A5066086076 @default.
- W3177010161 hasAuthorship W3177010161A5078367395 @default.
- W3177010161 hasConcept C108583219 @default.
- W3177010161 hasConcept C119857082 @default.
- W3177010161 hasConcept C121608353 @default.
- W3177010161 hasConcept C126322002 @default.
- W3177010161 hasConcept C142724271 @default.
- W3177010161 hasConcept C154945302 @default.
- W3177010161 hasConcept C2779399171 @default.
- W3177010161 hasConcept C2780472235 @default.
- W3177010161 hasConcept C41008148 @default.
- W3177010161 hasConcept C50644808 @default.
- W3177010161 hasConcept C530470458 @default.
- W3177010161 hasConcept C71924100 @default.
- W3177010161 hasConcept C81363708 @default.
- W3177010161 hasConceptScore W3177010161C108583219 @default.
- W3177010161 hasConceptScore W3177010161C119857082 @default.
- W3177010161 hasConceptScore W3177010161C121608353 @default.
- W3177010161 hasConceptScore W3177010161C126322002 @default.
- W3177010161 hasConceptScore W3177010161C142724271 @default.
- W3177010161 hasConceptScore W3177010161C154945302 @default.
- W3177010161 hasConceptScore W3177010161C2779399171 @default.
- W3177010161 hasConceptScore W3177010161C2780472235 @default.
- W3177010161 hasConceptScore W3177010161C41008148 @default.
- W3177010161 hasConceptScore W3177010161C50644808 @default.
- W3177010161 hasConceptScore W3177010161C530470458 @default.
- W3177010161 hasConceptScore W3177010161C71924100 @default.
- W3177010161 hasConceptScore W3177010161C81363708 @default.
- W3177010161 hasLocation W31770101611 @default.
- W3177010161 hasOpenAccess W3177010161 @default.
- W3177010161 hasPrimaryLocation W31770101611 @default.
- W3177010161 hasRelatedWork W2731899572 @default.
- W3177010161 hasRelatedWork W2999805992 @default.
- W3177010161 hasRelatedWork W3116150086 @default.
- W3177010161 hasRelatedWork W3133861977 @default.
- W3177010161 hasRelatedWork W4200173597 @default.
- W3177010161 hasRelatedWork W4223943233 @default.
- W3177010161 hasRelatedWork W4291897433 @default.
- W3177010161 hasRelatedWork W4312417841 @default.
- W3177010161 hasRelatedWork W4321369474 @default.
- W3177010161 hasRelatedWork W4380075502 @default.
- W3177010161 isParatext "false" @default.
- W3177010161 isRetracted "false" @default.
- W3177010161 magId "3177010161" @default.
- W3177010161 workType "article" @default.