Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177029177> ?p ?o ?g. }
- W3177029177 abstract "Patients at high risk of fracture due to metabolic diseases frequently undergo long-term antiresorptive therapy. However, in some patients, treatment is unsuccessful in preventing fractures or causes severe adverse health outcomes. Understanding load-driven bone remodelling, i.e., mechanoregulation, is critical to understand which patients are at risk for progressive bone degeneration and may enable better patient selection or adaptive therapeutic intervention strategies. Bone microarchitecture assessment using high-resolution peripheral quantitative computed tomography (HR-pQCT) combined with computed mechanical loads has successfully been used to investigate bone mechanoregulation at the trabecular level. To obtain the required mechanical loads that induce local variances in mechanical strain and cause bone remodelling, estimation of physiological loading is essential. Current models homogenise strain patterns throughout the bone to estimate load distribution in vivo , assuming that the bone structure is in biomechanical homoeostasis. Yet, this assumption may be flawed for investigating alterations in bone mechanoregulation. By further utilising available spatiotemporal information of time-lapsed bone imaging studies, we developed a mechanoregulation-based load estimation (MR) algorithm. MR calculates organ-scale loads by scaling and superimposing a set of predefined independent unit loads to optimise measured bone formation in high-, quiescence in medium-, and resorption in low-strain regions. We benchmarked our algorithm against a previously published load history (LH) algorithm using synthetic data, micro-CT images of murine vertebrae under defined experimental in vivo loadings, and HR-pQCT images from seven patients. Our algorithm consistently outperformed LH in all three datasets. In silico -generated time evolutions of distal radius geometries ( n = 5) indicated significantly higher sensitivity, specificity, and accuracy for MR than LH ( p < 0.01). This increased performance led to substantially better discrimination between physiological and extra-physiological loading in mice ( n = 8). Moreover, a significantly ( p < 0.01) higher association between remodelling events and computed local mechanical signals was found using MR [correct classification rate (CCR) = 0.42] than LH (CCR = 0.38) to estimate human distal radius loading. Future applications of MR may enable clinicians to link subtle changes in bone strength to changes in day-to-day loading, identifying weak spots in the bone microstructure for local intervention and personalised treatment approaches." @default.
- W3177029177 created "2021-07-05" @default.
- W3177029177 creator A5019976903 @default.
- W3177029177 creator A5033479381 @default.
- W3177029177 creator A5037956106 @default.
- W3177029177 creator A5038718884 @default.
- W3177029177 creator A5064056039 @default.
- W3177029177 creator A5076213413 @default.
- W3177029177 date "2021-06-25" @default.
- W3177029177 modified "2023-09-29" @default.
- W3177029177 title "Bone Mechanoregulation Allows Subject-Specific Load Estimation Based on Time-Lapsed Micro-CT and HR-pQCT in Vivo" @default.
- W3177029177 cites W1937235897 @default.
- W3177029177 cites W1976387068 @default.
- W3177029177 cites W1976824675 @default.
- W3177029177 cites W1980276147 @default.
- W3177029177 cites W1985227590 @default.
- W3177029177 cites W1985909653 @default.
- W3177029177 cites W1990896973 @default.
- W3177029177 cites W1997785273 @default.
- W3177029177 cites W2012187412 @default.
- W3177029177 cites W2021542350 @default.
- W3177029177 cites W2024916097 @default.
- W3177029177 cites W2029090208 @default.
- W3177029177 cites W2037970124 @default.
- W3177029177 cites W2041633571 @default.
- W3177029177 cites W2060150742 @default.
- W3177029177 cites W2068025211 @default.
- W3177029177 cites W2073721888 @default.
- W3177029177 cites W2077609524 @default.
- W3177029177 cites W2085047658 @default.
- W3177029177 cites W2096923546 @default.
- W3177029177 cites W2099072804 @default.
- W3177029177 cites W2099326137 @default.
- W3177029177 cites W2102229724 @default.
- W3177029177 cites W2104889685 @default.
- W3177029177 cites W2106082760 @default.
- W3177029177 cites W2106138685 @default.
- W3177029177 cites W2112779928 @default.
- W3177029177 cites W2113523811 @default.
- W3177029177 cites W2115028313 @default.
- W3177029177 cites W2131036894 @default.
- W3177029177 cites W2135972368 @default.
- W3177029177 cites W2136186287 @default.
- W3177029177 cites W2144789513 @default.
- W3177029177 cites W2148508563 @default.
- W3177029177 cites W2149486112 @default.
- W3177029177 cites W2153286782 @default.
- W3177029177 cites W2347043130 @default.
- W3177029177 cites W2513300113 @default.
- W3177029177 cites W2573400185 @default.
- W3177029177 cites W2605765353 @default.
- W3177029177 cites W2626779449 @default.
- W3177029177 cites W2766031427 @default.
- W3177029177 cites W2802100822 @default.
- W3177029177 cites W2810989230 @default.
- W3177029177 cites W2889454645 @default.
- W3177029177 cites W2900397062 @default.
- W3177029177 cites W2986263819 @default.
- W3177029177 cites W2990386340 @default.
- W3177029177 cites W3011237879 @default.
- W3177029177 cites W3015021397 @default.
- W3177029177 cites W3032874343 @default.
- W3177029177 cites W3080110387 @default.
- W3177029177 cites W3088689133 @default.
- W3177029177 cites W3093228612 @default.
- W3177029177 cites W3093363151 @default.
- W3177029177 cites W3105294486 @default.
- W3177029177 cites W3123488785 @default.
- W3177029177 cites W3124177967 @default.
- W3177029177 cites W4232212680 @default.
- W3177029177 doi "https://doi.org/10.3389/fbioe.2021.677985" @default.
- W3177029177 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8267803" @default.
- W3177029177 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34249883" @default.
- W3177029177 hasPublicationYear "2021" @default.
- W3177029177 type Work @default.
- W3177029177 sameAs 3177029177 @default.
- W3177029177 citedByCount "11" @default.
- W3177029177 countsByYear W31770291772022 @default.
- W3177029177 countsByYear W31770291772023 @default.
- W3177029177 crossrefType "journal-article" @default.
- W3177029177 hasAuthorship W3177029177A5019976903 @default.
- W3177029177 hasAuthorship W3177029177A5033479381 @default.
- W3177029177 hasAuthorship W3177029177A5037956106 @default.
- W3177029177 hasAuthorship W3177029177A5038718884 @default.
- W3177029177 hasAuthorship W3177029177A5064056039 @default.
- W3177029177 hasAuthorship W3177029177A5076213413 @default.
- W3177029177 hasBestOaLocation W31770291771 @default.
- W3177029177 hasConcept C126322002 @default.
- W3177029177 hasConcept C136229726 @default.
- W3177029177 hasConcept C142724271 @default.
- W3177029177 hasConcept C150903083 @default.
- W3177029177 hasConcept C159985019 @default.
- W3177029177 hasConcept C170033053 @default.
- W3177029177 hasConcept C192562407 @default.
- W3177029177 hasConcept C207001950 @default.
- W3177029177 hasConcept C2776541429 @default.
- W3177029177 hasConcept C2777425516 @default.
- W3177029177 hasConcept C2778383842 @default.
- W3177029177 hasConcept C2779329777 @default.
- W3177029177 hasConcept C71924100 @default.