Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177030266> ?p ?o ?g. }
- W3177030266 endingPage "065131" @default.
- W3177030266 startingPage "065131" @default.
- W3177030266 abstract "Inductive debris sensors are generally used in online debris detection and perform well in monitoring the wear condition of rotating facilities. The detection accuracy is restricted by the superposition and noise of the impedance signal. From the perspective of machine learning, superposition is underfitting and noise is overfitting, and both are caused by inappropriate model complexity. Therefore, a series of machine learning approaches is proposed in this paper to devise a sparse signal processing model that can adapt to model complexity. We propose that the algorithm applied to debris detection can recover the impulse signals from the impedance signals and help determine the material and the size of the debris. Numerical simulations are carried out to prove that the superposition resolution is 0.6 half-wave width and has the ability to resist noise with a signal-to-noise ratio of more than 10 dB. With the test results, we demonstrate how the proposed method can solve superposition and resist noise." @default.
- W3177030266 created "2021-07-05" @default.
- W3177030266 creator A5005728755 @default.
- W3177030266 creator A5022085690 @default.
- W3177030266 creator A5036085392 @default.
- W3177030266 creator A5052689516 @default.
- W3177030266 creator A5072915002 @default.
- W3177030266 creator A5084249961 @default.
- W3177030266 date "2021-06-01" @default.
- W3177030266 modified "2023-10-18" @default.
- W3177030266 title "Sparse signal recovery based on adaptive algorithms for debris detector" @default.
- W3177030266 cites W1995067743 @default.
- W3177030266 cites W2017718716 @default.
- W3177030266 cites W2018532578 @default.
- W3177030266 cites W2021703224 @default.
- W3177030266 cites W2034820728 @default.
- W3177030266 cites W2065293485 @default.
- W3177030266 cites W2081723177 @default.
- W3177030266 cites W2085842701 @default.
- W3177030266 cites W2090631587 @default.
- W3177030266 cites W2103519107 @default.
- W3177030266 cites W2124272294 @default.
- W3177030266 cites W2168335598 @default.
- W3177030266 cites W2506016096 @default.
- W3177030266 cites W2545593899 @default.
- W3177030266 cites W2739492417 @default.
- W3177030266 cites W2794494214 @default.
- W3177030266 cites W2883906314 @default.
- W3177030266 cites W2883973802 @default.
- W3177030266 cites W2890937969 @default.
- W3177030266 cites W2944407967 @default.
- W3177030266 cites W2958801721 @default.
- W3177030266 cites W2962898451 @default.
- W3177030266 cites W2963169856 @default.
- W3177030266 cites W2990839301 @default.
- W3177030266 cites W3025951888 @default.
- W3177030266 cites W3104773757 @default.
- W3177030266 doi "https://doi.org/10.1063/5.0050715" @default.
- W3177030266 hasPublicationYear "2021" @default.
- W3177030266 type Work @default.
- W3177030266 sameAs 3177030266 @default.
- W3177030266 citedByCount "3" @default.
- W3177030266 countsByYear W31770302662022 @default.
- W3177030266 countsByYear W31770302662023 @default.
- W3177030266 crossrefType "journal-article" @default.
- W3177030266 hasAuthorship W3177030266A5005728755 @default.
- W3177030266 hasAuthorship W3177030266A5022085690 @default.
- W3177030266 hasAuthorship W3177030266A5036085392 @default.
- W3177030266 hasAuthorship W3177030266A5052689516 @default.
- W3177030266 hasAuthorship W3177030266A5072915002 @default.
- W3177030266 hasAuthorship W3177030266A5084249961 @default.
- W3177030266 hasConcept C11413529 @default.
- W3177030266 hasConcept C115961682 @default.
- W3177030266 hasConcept C134306372 @default.
- W3177030266 hasConcept C154945302 @default.
- W3177030266 hasConcept C199360897 @default.
- W3177030266 hasConcept C22019652 @default.
- W3177030266 hasConcept C27753989 @default.
- W3177030266 hasConcept C2779843651 @default.
- W3177030266 hasConcept C33923547 @default.
- W3177030266 hasConcept C41008148 @default.
- W3177030266 hasConcept C50644808 @default.
- W3177030266 hasConcept C72279823 @default.
- W3177030266 hasConcept C76155785 @default.
- W3177030266 hasConcept C94915269 @default.
- W3177030266 hasConcept C99498987 @default.
- W3177030266 hasConceptScore W3177030266C11413529 @default.
- W3177030266 hasConceptScore W3177030266C115961682 @default.
- W3177030266 hasConceptScore W3177030266C134306372 @default.
- W3177030266 hasConceptScore W3177030266C154945302 @default.
- W3177030266 hasConceptScore W3177030266C199360897 @default.
- W3177030266 hasConceptScore W3177030266C22019652 @default.
- W3177030266 hasConceptScore W3177030266C27753989 @default.
- W3177030266 hasConceptScore W3177030266C2779843651 @default.
- W3177030266 hasConceptScore W3177030266C33923547 @default.
- W3177030266 hasConceptScore W3177030266C41008148 @default.
- W3177030266 hasConceptScore W3177030266C50644808 @default.
- W3177030266 hasConceptScore W3177030266C72279823 @default.
- W3177030266 hasConceptScore W3177030266C76155785 @default.
- W3177030266 hasConceptScore W3177030266C94915269 @default.
- W3177030266 hasConceptScore W3177030266C99498987 @default.
- W3177030266 hasFunder F4320324174 @default.
- W3177030266 hasFunder F4320335595 @default.
- W3177030266 hasFunder F4320335777 @default.
- W3177030266 hasIssue "6" @default.
- W3177030266 hasLocation W31770302661 @default.
- W3177030266 hasLocation W31770302662 @default.
- W3177030266 hasOpenAccess W3177030266 @default.
- W3177030266 hasPrimaryLocation W31770302661 @default.
- W3177030266 hasRelatedWork W2767651786 @default.
- W3177030266 hasRelatedWork W2792213864 @default.
- W3177030266 hasRelatedWork W2989932438 @default.
- W3177030266 hasRelatedWork W3044842769 @default.
- W3177030266 hasRelatedWork W3081496756 @default.
- W3177030266 hasRelatedWork W3099765033 @default.
- W3177030266 hasRelatedWork W3102792585 @default.
- W3177030266 hasRelatedWork W4224929651 @default.
- W3177030266 hasRelatedWork W4229014226 @default.