Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177064188> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3177064188 endingPage "104372" @default.
- W3177064188 startingPage "104372" @default.
- W3177064188 abstract "Maximum likelihood (ML) estimators of the model parameters in multiple linear regression are obtained using genetic algorithm (GA) when the distribution of the error terms is long-tailed symmetric. We compare the efficiencies of the ML estimators obtained using GA with the corresponding ML estimators obtained using other iterative techniques via an extensive Monte Carlo simulation study. Robust confidence intervals based on modified ML estimators are used as the search space in GA. Our simulation study shows that GA outperforms traditional algorithms in most cases. Therefore, we suggest using GA to obtain the ML estimates of the multiple linear regression model parameters when the distribution of the error terms is LTS. Finally, real data of the Covid-19 pandemic, a global health crisis in early 2020, is presented for illustrative purposes." @default.
- W3177064188 created "2021-07-05" @default.
- W3177064188 creator A5024180154 @default.
- W3177064188 creator A5025623433 @default.
- W3177064188 creator A5090010690 @default.
- W3177064188 date "2021-09-01" @default.
- W3177064188 modified "2023-10-17" @default.
- W3177064188 title "A new approach using the genetic algorithm for parameter estimation in multiple linear regression with long-tailed symmetric distributed error terms: An application to the Covid-19 data" @default.
- W3177064188 cites W1966193234 @default.
- W3177064188 cites W1970070532 @default.
- W3177064188 cites W1972779359 @default.
- W3177064188 cites W1974006435 @default.
- W3177064188 cites W1977485693 @default.
- W3177064188 cites W1986537414 @default.
- W3177064188 cites W1999245030 @default.
- W3177064188 cites W2004170255 @default.
- W3177064188 cites W2006406494 @default.
- W3177064188 cites W2023433987 @default.
- W3177064188 cites W2023446370 @default.
- W3177064188 cites W2038646895 @default.
- W3177064188 cites W2051931434 @default.
- W3177064188 cites W2057181991 @default.
- W3177064188 cites W2062279503 @default.
- W3177064188 cites W2080277735 @default.
- W3177064188 cites W2083774599 @default.
- W3177064188 cites W2086674519 @default.
- W3177064188 cites W2171768696 @default.
- W3177064188 cites W2476584351 @default.
- W3177064188 cites W2656851913 @default.
- W3177064188 cites W2734536052 @default.
- W3177064188 cites W2790541687 @default.
- W3177064188 cites W2883911124 @default.
- W3177064188 cites W2998196068 @default.
- W3177064188 cites W2999896566 @default.
- W3177064188 cites W3013022943 @default.
- W3177064188 cites W3110787658 @default.
- W3177064188 cites W3114421745 @default.
- W3177064188 cites W4231660004 @default.
- W3177064188 cites W4241138704 @default.
- W3177064188 cites W4241745315 @default.
- W3177064188 doi "https://doi.org/10.1016/j.chemolab.2021.104372" @default.
- W3177064188 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8413307" @default.
- W3177064188 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34493885" @default.
- W3177064188 hasPublicationYear "2021" @default.
- W3177064188 type Work @default.
- W3177064188 sameAs 3177064188 @default.
- W3177064188 citedByCount "3" @default.
- W3177064188 countsByYear W31770641882021 @default.
- W3177064188 countsByYear W31770641882022 @default.
- W3177064188 crossrefType "journal-article" @default.
- W3177064188 hasAuthorship W3177064188A5024180154 @default.
- W3177064188 hasAuthorship W3177064188A5025623433 @default.
- W3177064188 hasAuthorship W3177064188A5090010690 @default.
- W3177064188 hasBestOaLocation W31770641881 @default.
- W3177064188 hasConcept C105795698 @default.
- W3177064188 hasConcept C110121322 @default.
- W3177064188 hasConcept C11413529 @default.
- W3177064188 hasConcept C134306372 @default.
- W3177064188 hasConcept C163175372 @default.
- W3177064188 hasConcept C185429906 @default.
- W3177064188 hasConcept C19499675 @default.
- W3177064188 hasConcept C33923547 @default.
- W3177064188 hasConcept C41008148 @default.
- W3177064188 hasConcept C44249647 @default.
- W3177064188 hasConcept C48921125 @default.
- W3177064188 hasConcept C83546350 @default.
- W3177064188 hasConceptScore W3177064188C105795698 @default.
- W3177064188 hasConceptScore W3177064188C110121322 @default.
- W3177064188 hasConceptScore W3177064188C11413529 @default.
- W3177064188 hasConceptScore W3177064188C134306372 @default.
- W3177064188 hasConceptScore W3177064188C163175372 @default.
- W3177064188 hasConceptScore W3177064188C185429906 @default.
- W3177064188 hasConceptScore W3177064188C19499675 @default.
- W3177064188 hasConceptScore W3177064188C33923547 @default.
- W3177064188 hasConceptScore W3177064188C41008148 @default.
- W3177064188 hasConceptScore W3177064188C44249647 @default.
- W3177064188 hasConceptScore W3177064188C48921125 @default.
- W3177064188 hasConceptScore W3177064188C83546350 @default.
- W3177064188 hasLocation W31770641881 @default.
- W3177064188 hasLocation W31770641882 @default.
- W3177064188 hasLocation W31770641883 @default.
- W3177064188 hasOpenAccess W3177064188 @default.
- W3177064188 hasPrimaryLocation W31770641881 @default.
- W3177064188 hasRelatedWork W1968104995 @default.
- W3177064188 hasRelatedWork W2363458751 @default.
- W3177064188 hasRelatedWork W2382261219 @default.
- W3177064188 hasRelatedWork W2525669318 @default.
- W3177064188 hasRelatedWork W2916843338 @default.
- W3177064188 hasRelatedWork W3008542205 @default.
- W3177064188 hasRelatedWork W3134080823 @default.
- W3177064188 hasRelatedWork W4252172446 @default.
- W3177064188 hasRelatedWork W4288573334 @default.
- W3177064188 hasRelatedWork W803217542 @default.
- W3177064188 hasVolume "216" @default.
- W3177064188 isParatext "false" @default.
- W3177064188 isRetracted "false" @default.
- W3177064188 magId "3177064188" @default.
- W3177064188 workType "article" @default.