Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177079863> ?p ?o ?g. }
- W3177079863 endingPage "6390" @default.
- W3177079863 startingPage "6359" @default.
- W3177079863 abstract "Nonnegative matrix factorization (NMF) has been one of the most widely used techniques for hyperspectral unmixing (HU), which aims at decomposing each mixed pixel into a set of endmembers and their corresponding fractional abundances. However, the standard NMF model is ill-posed with only considering the non-negativity constraint. Therefore, many kinds of regularization (e.g. Tikhonov or sparsity regularization) have been imposed into NMF to well-define the model. Different from the general regularization, we introduce the entropy regularization into the NMF and propose an entropy regularized NMF (ERNMF) model for HU. In ERNMF, we minimize the entropy of that abundances on each pixel, which can achieve the sparsity of abundances. We also introduce a strategy to adaptively adjust the regularization parameter. In addition, we explore the proposed ERNMF with two optimization algorithms and provide the corresponding convergence and complexity analysis. Experimental results on both simulated and real-world data sets demonstrate the effectiveness of our proposed model and algorithms in comparison to the state-of-the-art approaches." @default.
- W3177079863 created "2021-07-05" @default.
- W3177079863 creator A5014312349 @default.
- W3177079863 creator A5050202490 @default.
- W3177079863 creator A5075310452 @default.
- W3177079863 creator A5078092645 @default.
- W3177079863 creator A5090588286 @default.
- W3177079863 date "2021-06-28" @default.
- W3177079863 modified "2023-09-30" @default.
- W3177079863 title "Nonnegative matrix factorization with entropy regularization for hyperspectral unmixing" @default.
- W3177079863 cites W1524571335 @default.
- W3177079863 cites W1902027874 @default.
- W3177079863 cites W1964570608 @default.
- W3177079863 cites W1965888395 @default.
- W3177079863 cites W1974448798 @default.
- W3177079863 cites W1976391658 @default.
- W3177079863 cites W1976615758 @default.
- W3177079863 cites W1998700518 @default.
- W3177079863 cites W2027878671 @default.
- W3177079863 cites W2032944446 @default.
- W3177079863 cites W2033529478 @default.
- W3177079863 cites W2050041778 @default.
- W3177079863 cites W2053377922 @default.
- W3177079863 cites W2063069198 @default.
- W3177079863 cites W2063790512 @default.
- W3177079863 cites W2069959554 @default.
- W3177079863 cites W2070424424 @default.
- W3177079863 cites W2081555128 @default.
- W3177079863 cites W2082639035 @default.
- W3177079863 cites W2084780416 @default.
- W3177079863 cites W2093059173 @default.
- W3177079863 cites W2101837437 @default.
- W3177079863 cites W2108119513 @default.
- W3177079863 cites W2110096996 @default.
- W3177079863 cites W2114486983 @default.
- W3177079863 cites W2118943995 @default.
- W3177079863 cites W2125298866 @default.
- W3177079863 cites W2127062304 @default.
- W3177079863 cites W2130835014 @default.
- W3177079863 cites W2147613845 @default.
- W3177079863 cites W2156458885 @default.
- W3177079863 cites W2156787910 @default.
- W3177079863 cites W2157321686 @default.
- W3177079863 cites W2163886442 @default.
- W3177079863 cites W2169466597 @default.
- W3177079863 cites W2169924573 @default.
- W3177079863 cites W2415341181 @default.
- W3177079863 cites W2560082588 @default.
- W3177079863 cites W2593819072 @default.
- W3177079863 cites W2604977491 @default.
- W3177079863 cites W2605904273 @default.
- W3177079863 cites W2774093485 @default.
- W3177079863 cites W2796629918 @default.
- W3177079863 cites W2803725643 @default.
- W3177079863 cites W2897962879 @default.
- W3177079863 cites W2910655660 @default.
- W3177079863 cites W2911999741 @default.
- W3177079863 cites W2921511952 @default.
- W3177079863 cites W2957244468 @default.
- W3177079863 cites W2967530387 @default.
- W3177079863 cites W2974875535 @default.
- W3177079863 cites W3007194108 @default.
- W3177079863 cites W3009562877 @default.
- W3177079863 cites W3012359476 @default.
- W3177079863 cites W3012548728 @default.
- W3177079863 cites W3036007026 @default.
- W3177079863 cites W3042335128 @default.
- W3177079863 cites W3047443805 @default.
- W3177079863 cites W3048175892 @default.
- W3177079863 cites W3048631361 @default.
- W3177079863 cites W3084837759 @default.
- W3177079863 cites W3088589135 @default.
- W3177079863 cites W3101012758 @default.
- W3177079863 cites W3101195009 @default.
- W3177079863 cites W3211508595 @default.
- W3177079863 cites W4233760599 @default.
- W3177079863 doi "https://doi.org/10.1080/01431161.2021.1933245" @default.
- W3177079863 hasPublicationYear "2021" @default.
- W3177079863 type Work @default.
- W3177079863 sameAs 3177079863 @default.
- W3177079863 citedByCount "5" @default.
- W3177079863 countsByYear W31770798632022 @default.
- W3177079863 countsByYear W31770798632023 @default.
- W3177079863 crossrefType "journal-article" @default.
- W3177079863 hasAuthorship W3177079863A5014312349 @default.
- W3177079863 hasAuthorship W3177079863A5050202490 @default.
- W3177079863 hasAuthorship W3177079863A5075310452 @default.
- W3177079863 hasAuthorship W3177079863A5078092645 @default.
- W3177079863 hasAuthorship W3177079863A5090588286 @default.
- W3177079863 hasConcept C106301342 @default.
- W3177079863 hasConcept C11413529 @default.
- W3177079863 hasConcept C121332964 @default.
- W3177079863 hasConcept C134306372 @default.
- W3177079863 hasConcept C135252773 @default.
- W3177079863 hasConcept C152442038 @default.
- W3177079863 hasConcept C152671427 @default.
- W3177079863 hasConcept C153180895 @default.
- W3177079863 hasConcept C154945302 @default.