Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177133512> ?p ?o ?g. }
- W3177133512 endingPage "2915" @default.
- W3177133512 startingPage "2907" @default.
- W3177133512 abstract "We present a novel deep learning model equipped with a new region-aware global context modeling technique for automatic nerve segmentation from ultrasound images, which is a challenging task due to (1) the large variation and blurred boundaries of targets, (2) the large amount of speckle noise in ultrasound images, and (3) the inherent real-time requirement of this task. It is essential to efficiently capture long-range dependencies by global context modeling for a segmentation network to overcome these challenges. Traditional global context modeling techniques usually explore pixel-aware correlations to establish long-range dependencies, which are usually computation-intensive and greatly degrade time performance. In addition, in this application, pixel-aware modeling may inevitably introduce much speckle noise in the computation and potentially degrade segmentation performance. In this paper, we propose a novel region-aware modeling technique to establish long-range dependencies based on different regions to improve segmentation accuracy while maintaining real-time performance; we call it region-aware pyramid aggregation (RPA) module. In order to adaptively divide the feature maps into a set of semantic-independent regions, we develop an attention mechanism and integrate it into the spatial pyramid network to evaluate the semantic similarity of different regions. We further develop an adaptive pyramid fusion (APF) module to dynamically fuse the multi-level features generated from the decoder to refining the segmentation results. We conducted extensive experiments on a famous public ultrasound nerve image segmentation dataset. Experimental results demonstrate that our method consistently outperforms our rivals in terms of segmentation accuracy. The code is available at https://github.com/jsonliu-szu/RAGCM." @default.
- W3177133512 created "2021-07-05" @default.
- W3177133512 creator A5026540573 @default.
- W3177133512 creator A5031202827 @default.
- W3177133512 creator A5039966518 @default.
- W3177133512 creator A5046597133 @default.
- W3177133512 creator A5090477001 @default.
- W3177133512 date "2021-05-18" @default.
- W3177133512 modified "2023-10-13" @default.
- W3177133512 title "Region-aware Global Context Modeling for Automatic Nerve Segmentation from Ultrasound Images" @default.
- W3177133512 cites W1817277359 @default.
- W3177133512 cites W1901129140 @default.
- W3177133512 cites W2097117768 @default.
- W3177133512 cites W2117539524 @default.
- W3177133512 cites W2144513243 @default.
- W3177133512 cites W2194775991 @default.
- W3177133512 cites W2407521645 @default.
- W3177133512 cites W2412782625 @default.
- W3177133512 cites W2466942361 @default.
- W3177133512 cites W2556967412 @default.
- W3177133512 cites W2560023338 @default.
- W3177133512 cites W2565639579 @default.
- W3177133512 cites W2773429971 @default.
- W3177133512 cites W2798122215 @default.
- W3177133512 cites W2884436604 @default.
- W3177133512 cites W2899771611 @default.
- W3177133512 cites W2955058313 @default.
- W3177133512 cites W2962914239 @default.
- W3177133512 cites W2963403868 @default.
- W3177133512 cites W2963481481 @default.
- W3177133512 cites W2963815618 @default.
- W3177133512 cites W2981689412 @default.
- W3177133512 cites W2982220924 @default.
- W3177133512 cites W2993235622 @default.
- W3177133512 cites W3008824089 @default.
- W3177133512 cites W3013198566 @default.
- W3177133512 cites W3034428269 @default.
- W3177133512 cites W3034552520 @default.
- W3177133512 cites W3103010481 @default.
- W3177133512 doi "https://doi.org/10.1609/aaai.v35i4.16397" @default.
- W3177133512 hasPublicationYear "2021" @default.
- W3177133512 type Work @default.
- W3177133512 sameAs 3177133512 @default.
- W3177133512 citedByCount "5" @default.
- W3177133512 countsByYear W31771335122022 @default.
- W3177133512 countsByYear W31771335122023 @default.
- W3177133512 crossrefType "journal-article" @default.
- W3177133512 hasAuthorship W3177133512A5026540573 @default.
- W3177133512 hasAuthorship W3177133512A5031202827 @default.
- W3177133512 hasAuthorship W3177133512A5039966518 @default.
- W3177133512 hasAuthorship W3177133512A5046597133 @default.
- W3177133512 hasAuthorship W3177133512A5090477001 @default.
- W3177133512 hasBestOaLocation W31771335121 @default.
- W3177133512 hasConcept C102290492 @default.
- W3177133512 hasConcept C115961682 @default.
- W3177133512 hasConcept C120665830 @default.
- W3177133512 hasConcept C121332964 @default.
- W3177133512 hasConcept C124504099 @default.
- W3177133512 hasConcept C138885662 @default.
- W3177133512 hasConcept C142575187 @default.
- W3177133512 hasConcept C151730666 @default.
- W3177133512 hasConcept C153180895 @default.
- W3177133512 hasConcept C154945302 @default.
- W3177133512 hasConcept C160633673 @default.
- W3177133512 hasConcept C180940675 @default.
- W3177133512 hasConcept C2776401178 @default.
- W3177133512 hasConcept C2779343474 @default.
- W3177133512 hasConcept C31972630 @default.
- W3177133512 hasConcept C41008148 @default.
- W3177133512 hasConcept C41895202 @default.
- W3177133512 hasConcept C86803240 @default.
- W3177133512 hasConcept C89600930 @default.
- W3177133512 hasConcept C99498987 @default.
- W3177133512 hasConceptScore W3177133512C102290492 @default.
- W3177133512 hasConceptScore W3177133512C115961682 @default.
- W3177133512 hasConceptScore W3177133512C120665830 @default.
- W3177133512 hasConceptScore W3177133512C121332964 @default.
- W3177133512 hasConceptScore W3177133512C124504099 @default.
- W3177133512 hasConceptScore W3177133512C138885662 @default.
- W3177133512 hasConceptScore W3177133512C142575187 @default.
- W3177133512 hasConceptScore W3177133512C151730666 @default.
- W3177133512 hasConceptScore W3177133512C153180895 @default.
- W3177133512 hasConceptScore W3177133512C154945302 @default.
- W3177133512 hasConceptScore W3177133512C160633673 @default.
- W3177133512 hasConceptScore W3177133512C180940675 @default.
- W3177133512 hasConceptScore W3177133512C2776401178 @default.
- W3177133512 hasConceptScore W3177133512C2779343474 @default.
- W3177133512 hasConceptScore W3177133512C31972630 @default.
- W3177133512 hasConceptScore W3177133512C41008148 @default.
- W3177133512 hasConceptScore W3177133512C41895202 @default.
- W3177133512 hasConceptScore W3177133512C86803240 @default.
- W3177133512 hasConceptScore W3177133512C89600930 @default.
- W3177133512 hasConceptScore W3177133512C99498987 @default.
- W3177133512 hasIssue "4" @default.
- W3177133512 hasLocation W31771335121 @default.
- W3177133512 hasOpenAccess W3177133512 @default.
- W3177133512 hasPrimaryLocation W31771335121 @default.
- W3177133512 hasRelatedWork W1669643531 @default.