Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177160298> ?p ?o ?g. }
- W3177160298 endingPage "114414" @default.
- W3177160298 startingPage "114414" @default.
- W3177160298 abstract "• The metasurface is employed in the design of a galloping energy harvesting system for the first time. • The influences of different metasurfaces on the aerodynamic characteristics of bluff bodies are discussed. • Wind tunnel tests are carried out to evaluate the metasurface-based galloping energy harvester. • 3D CFD simulation is performed to interpret the flow fields around the bluff bodies. Inspired by the successful applications of metasurfaces in many other fields, this paper aims to explore the potential application of metasurfaces in designing aerodynamic systems. Bluff bodies are proposed to be wrapped in metasurfaces for improving galloping energy harvesting. Three different metasurfaces with convex cylinder, tri-prim, and wedge ornaments are designed. A general aeroelastic model for a galloping energy harvester is developed. The aerodynamic force is represented by a polynomial function with its coefficients being determined from three-dimensional CFD simulations. Subsequently, physical prototypes of the proposed galloping piezoelectric energy harvesters are fabricated, and experimental tests are conducted. The theoretical model is validated by the experimental results. The analytical method and three-dimensional CFD simulation are combined to predict the dynamic responses of the metasurface-wrapped GPEHs. Besides, the results show that the metasurface can significantly change the aerodynamic characteristics of the bluff body, and it is learned that a bluff body wrapped in convex cylinder metasurface could bring benefits for promoting galloping energy harvesting performance. Further experimental studies are conducted to reveal the effects of convex ornament parameters on the galloping energy harvesting performance. It is found that using the metasurface distributed with convex cylinder ornaments of diameter 6 mm and height 9 mm leads to the largest vibration displacement and largest voltage output. Compared to the typical GPEH, the maximum vibration displacement and maximum output voltage of the proposed galloping piezoelectric energy harvester can be increased by 26.81% and 26.14%, respectively. The vortex shedding processes around the wind flow fields near the bluff bodies wrapped in metasurfaces are simulated. The underlying aerodynamic mechanism of the influence of the metasurfaces is unveiled. Finally, based on the validated theoretical model, a parametric study is carried out to investigate the effects of the load resistance and electromechanical coupling strength on the galloping energy harvesting performance. It is concluded that increasing the coupling strength to a certain level and tuning the load resistance to the optimal value could further improve the power output. However, when the electromechanical coupling strength increases to a certain extent, the power output will reach the saturation state, and the coupling strength is extremely large. Therefore, a piezoelectric element with a moderate coupling coefficient is recommended for practical applications from the perspective of economic benefit." @default.
- W3177160298 created "2021-07-05" @default.
- W3177160298 creator A5028685042 @default.
- W3177160298 creator A5030214978 @default.
- W3177160298 creator A5032080056 @default.
- W3177160298 creator A5041383884 @default.
- W3177160298 creator A5049597810 @default.
- W3177160298 creator A5073818125 @default.
- W3177160298 creator A5086290413 @default.
- W3177160298 date "2021-09-01" @default.
- W3177160298 modified "2023-10-11" @default.
- W3177160298 title "Exploring the potential benefits of using metasurface for galloping energy harvesting" @default.
- W3177160298 cites W2008707187 @default.
- W3177160298 cites W2037136358 @default.
- W3177160298 cites W2041236087 @default.
- W3177160298 cites W2041517429 @default.
- W3177160298 cites W2066060292 @default.
- W3177160298 cites W2071730391 @default.
- W3177160298 cites W2081496607 @default.
- W3177160298 cites W2109104527 @default.
- W3177160298 cites W2115081687 @default.
- W3177160298 cites W2132604567 @default.
- W3177160298 cites W2301176770 @default.
- W3177160298 cites W2493373081 @default.
- W3177160298 cites W2601813237 @default.
- W3177160298 cites W2611255492 @default.
- W3177160298 cites W2773174943 @default.
- W3177160298 cites W2780231562 @default.
- W3177160298 cites W2785771307 @default.
- W3177160298 cites W2790186145 @default.
- W3177160298 cites W2809044071 @default.
- W3177160298 cites W2906893917 @default.
- W3177160298 cites W2907513606 @default.
- W3177160298 cites W2911807308 @default.
- W3177160298 cites W2912042724 @default.
- W3177160298 cites W2952006543 @default.
- W3177160298 cites W2971901377 @default.
- W3177160298 cites W2980223570 @default.
- W3177160298 cites W2982356683 @default.
- W3177160298 cites W2998080447 @default.
- W3177160298 cites W2999837546 @default.
- W3177160298 cites W3004743291 @default.
- W3177160298 cites W3013298650 @default.
- W3177160298 cites W3014459620 @default.
- W3177160298 cites W3018084443 @default.
- W3177160298 cites W3019944992 @default.
- W3177160298 cites W3020821124 @default.
- W3177160298 cites W3020975711 @default.
- W3177160298 cites W3040855509 @default.
- W3177160298 cites W3045539402 @default.
- W3177160298 cites W3046618481 @default.
- W3177160298 cites W3048477598 @default.
- W3177160298 cites W3049460853 @default.
- W3177160298 cites W3061350411 @default.
- W3177160298 cites W3080357313 @default.
- W3177160298 cites W3085927104 @default.
- W3177160298 cites W3088209453 @default.
- W3177160298 cites W3089081661 @default.
- W3177160298 cites W3089392264 @default.
- W3177160298 cites W3096628963 @default.
- W3177160298 cites W3099944150 @default.
- W3177160298 cites W3107263286 @default.
- W3177160298 cites W3109043458 @default.
- W3177160298 cites W3110530306 @default.
- W3177160298 cites W3138855125 @default.
- W3177160298 cites W3139065934 @default.
- W3177160298 cites W3151803792 @default.
- W3177160298 cites W3160100072 @default.
- W3177160298 doi "https://doi.org/10.1016/j.enconman.2021.114414" @default.
- W3177160298 hasPublicationYear "2021" @default.
- W3177160298 type Work @default.
- W3177160298 sameAs 3177160298 @default.
- W3177160298 citedByCount "30" @default.
- W3177160298 countsByYear W31771602982021 @default.
- W3177160298 countsByYear W31771602982022 @default.
- W3177160298 countsByYear W31771602982023 @default.
- W3177160298 crossrefType "journal-article" @default.
- W3177160298 hasAuthorship W3177160298A5028685042 @default.
- W3177160298 hasAuthorship W3177160298A5030214978 @default.
- W3177160298 hasAuthorship W3177160298A5032080056 @default.
- W3177160298 hasAuthorship W3177160298A5041383884 @default.
- W3177160298 hasAuthorship W3177160298A5049597810 @default.
- W3177160298 hasAuthorship W3177160298A5073818125 @default.
- W3177160298 hasAuthorship W3177160298A5086290413 @default.
- W3177160298 hasConcept C100086909 @default.
- W3177160298 hasConcept C101518730 @default.
- W3177160298 hasConcept C117185709 @default.
- W3177160298 hasConcept C121332964 @default.
- W3177160298 hasConcept C127413603 @default.
- W3177160298 hasConcept C132557482 @default.
- W3177160298 hasConcept C13393347 @default.
- W3177160298 hasConcept C146978453 @default.
- W3177160298 hasConcept C1633027 @default.
- W3177160298 hasConcept C186370098 @default.
- W3177160298 hasConcept C203311528 @default.
- W3177160298 hasConcept C24890656 @default.
- W3177160298 hasConcept C2781226546 @default.
- W3177160298 hasConcept C57879066 @default.