Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177235350> ?p ?o ?g. }
- W3177235350 endingPage "104355" @default.
- W3177235350 startingPage "104355" @default.
- W3177235350 abstract "Classifier learning with imbalanced data is one of the main challenges in the data mining community. An ensemble of classifiers is a popular solution to this problem, and it has acquired significant attention owing to its better performance as compared to individual classifiers. In this paper, we propose an imbalanced classification ensemble method, which is hereafter referred to as overlap and imbalanced sensitive random forest (OIS-RF). We consider the existence of overlap in imbalanced data and create a new coefficient called Hard To Learn (HTL) which aims to measure the degree of importance for each training instance. In this regard, OIS-RF focuses more on learning the instances with high importance in each sub-dataset. Furthermore, to encourage the diversity of the ensemble, a weighted bootstrap method is proposed to generate sub-datasets containing diverse local information. The proposed method is evaluated on imbalanced datasets and is supported by statistical analyses. The results show that our method outperforms 9 state-of-the-art ensemble algorithms." @default.
- W3177235350 created "2021-07-05" @default.
- W3177235350 creator A5009338775 @default.
- W3177235350 creator A5014569032 @default.
- W3177235350 creator A5022807806 @default.
- W3177235350 creator A5065219991 @default.
- W3177235350 creator A5067265615 @default.
- W3177235350 creator A5069016585 @default.
- W3177235350 date "2021-09-01" @default.
- W3177235350 modified "2023-10-02" @default.
- W3177235350 title "OIS-RF: A novel overlap and imbalance sensitive random forest" @default.
- W3177235350 cites W1100975233 @default.
- W3177235350 cites W1586851133 @default.
- W3177235350 cites W1964675540 @default.
- W3177235350 cites W1985414995 @default.
- W3177235350 cites W1985442349 @default.
- W3177235350 cites W1996910954 @default.
- W3177235350 cites W2000950277 @default.
- W3177235350 cites W2019778169 @default.
- W3177235350 cites W2029113598 @default.
- W3177235350 cites W2032435122 @default.
- W3177235350 cites W2032617530 @default.
- W3177235350 cites W2070808135 @default.
- W3177235350 cites W2082344779 @default.
- W3177235350 cites W2096945460 @default.
- W3177235350 cites W2099454382 @default.
- W3177235350 cites W2107542581 @default.
- W3177235350 cites W2112627523 @default.
- W3177235350 cites W2115629999 @default.
- W3177235350 cites W2118978333 @default.
- W3177235350 cites W2119498311 @default.
- W3177235350 cites W2148143831 @default.
- W3177235350 cites W2157751754 @default.
- W3177235350 cites W2164330572 @default.
- W3177235350 cites W2214478205 @default.
- W3177235350 cites W2395350663 @default.
- W3177235350 cites W2462401346 @default.
- W3177235350 cites W2499526870 @default.
- W3177235350 cites W2562319768 @default.
- W3177235350 cites W2610250061 @default.
- W3177235350 cites W2764270061 @default.
- W3177235350 cites W2770076983 @default.
- W3177235350 cites W2783908707 @default.
- W3177235350 cites W2789515102 @default.
- W3177235350 cites W2790031975 @default.
- W3177235350 cites W2794290001 @default.
- W3177235350 cites W2794590714 @default.
- W3177235350 cites W2839737605 @default.
- W3177235350 cites W2911754149 @default.
- W3177235350 cites W2911964244 @default.
- W3177235350 cites W2916025621 @default.
- W3177235350 cites W2932067728 @default.
- W3177235350 cites W2933246980 @default.
- W3177235350 cites W2943847483 @default.
- W3177235350 cites W2951116713 @default.
- W3177235350 cites W2971749073 @default.
- W3177235350 cites W2999693235 @default.
- W3177235350 cites W4212883601 @default.
- W3177235350 cites W4245807786 @default.
- W3177235350 cites W619160221 @default.
- W3177235350 cites W906603025 @default.
- W3177235350 doi "https://doi.org/10.1016/j.engappai.2021.104355" @default.
- W3177235350 hasPublicationYear "2021" @default.
- W3177235350 type Work @default.
- W3177235350 sameAs 3177235350 @default.
- W3177235350 citedByCount "11" @default.
- W3177235350 countsByYear W31772353502022 @default.
- W3177235350 countsByYear W31772353502023 @default.
- W3177235350 crossrefType "journal-article" @default.
- W3177235350 hasAuthorship W3177235350A5009338775 @default.
- W3177235350 hasAuthorship W3177235350A5014569032 @default.
- W3177235350 hasAuthorship W3177235350A5022807806 @default.
- W3177235350 hasAuthorship W3177235350A5065219991 @default.
- W3177235350 hasAuthorship W3177235350A5067265615 @default.
- W3177235350 hasAuthorship W3177235350A5069016585 @default.
- W3177235350 hasConcept C11413529 @default.
- W3177235350 hasConcept C154945302 @default.
- W3177235350 hasConcept C169258074 @default.
- W3177235350 hasConcept C41008148 @default.
- W3177235350 hasConceptScore W3177235350C11413529 @default.
- W3177235350 hasConceptScore W3177235350C154945302 @default.
- W3177235350 hasConceptScore W3177235350C169258074 @default.
- W3177235350 hasConceptScore W3177235350C41008148 @default.
- W3177235350 hasLocation W31772353501 @default.
- W3177235350 hasOpenAccess W3177235350 @default.
- W3177235350 hasPrimaryLocation W31772353501 @default.
- W3177235350 hasRelatedWork W2240965754 @default.
- W3177235350 hasRelatedWork W2275058042 @default.
- W3177235350 hasRelatedWork W2351491280 @default.
- W3177235350 hasRelatedWork W2790695452 @default.
- W3177235350 hasRelatedWork W2950495821 @default.
- W3177235350 hasRelatedWork W303980170 @default.
- W3177235350 hasRelatedWork W3208985699 @default.
- W3177235350 hasRelatedWork W4280494160 @default.
- W3177235350 hasRelatedWork W4320483443 @default.
- W3177235350 hasRelatedWork W4323021782 @default.
- W3177235350 hasVolume "104" @default.
- W3177235350 isParatext "false" @default.