Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177247941> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3177247941 abstract "<p>The most critical aspect of application of digital soil mapping is its limited transferability. Modelling soil properties for regions where no or only sparse soil information is available is highly uncertain, when using the low-cost geo-spatial environmental covariates alone. To overcome this drawback, transfer learning has been introduced in different environmental sciences, including soil science. The general idea behind extrapolation of soil information with transfer learning in soil science is that the target area to transfer to is alike, e.g. in terms of soil-forming factors, and the same machine learning rules can be applied. Supervised machine learning, so far, has been used to transfer the soil information from the reference to the target areas with very similar environmental characteristics between both. Hence, it is unclear how machine learning can perform for other target regions with different environmental characteristics. Semi-supervised learning is an approach to machine learning that combines a small amount of labeled data (reference area) with a large amount of unlabeled data (target area) during training. In this study, we explored if semi-supervised learning could improve the transferability of digital soil mapping relative to supervised learning methods. Soil data for two arid regions and associated environmental covariates were obtained. Semi-supervised learning and supervised learning models were trained based on the data in the reference area and then tested based on the data in the target area. The results of this study indicated the higher power of semi-supervised learning for transferring soil information from one area to another in comparison to the supervised learning method.&#160;&#160;&#160;</p>" @default.
- W3177247941 created "2021-07-05" @default.
- W3177247941 creator A5019477499 @default.
- W3177247941 creator A5024770531 @default.
- W3177247941 creator A5032964058 @default.
- W3177247941 creator A5056756521 @default.
- W3177247941 date "2021-04-28" @default.
- W3177247941 modified "2023-09-27" @default.
- W3177247941 title "Semi-supervised learning for increasing transferability of machine learning in digital soil mapping " @default.
- W3177247941 doi "https://doi.org/10.5194/ismc2021-32" @default.
- W3177247941 hasPublicationYear "2021" @default.
- W3177247941 type Work @default.
- W3177247941 sameAs 3177247941 @default.
- W3177247941 citedByCount "1" @default.
- W3177247941 countsByYear W31772479412021 @default.
- W3177247941 crossrefType "posted-content" @default.
- W3177247941 hasAuthorship W3177247941A5019477499 @default.
- W3177247941 hasAuthorship W3177247941A5024770531 @default.
- W3177247941 hasAuthorship W3177247941A5032964058 @default.
- W3177247941 hasAuthorship W3177247941A5056756521 @default.
- W3177247941 hasConcept C104471815 @default.
- W3177247941 hasConcept C119857082 @default.
- W3177247941 hasConcept C136389625 @default.
- W3177247941 hasConcept C140331021 @default.
- W3177247941 hasConcept C150899416 @default.
- W3177247941 hasConcept C154945302 @default.
- W3177247941 hasConcept C159390177 @default.
- W3177247941 hasConcept C159750122 @default.
- W3177247941 hasConcept C39432304 @default.
- W3177247941 hasConcept C41008148 @default.
- W3177247941 hasConcept C50644808 @default.
- W3177247941 hasConcept C58973888 @default.
- W3177247941 hasConcept C61272859 @default.
- W3177247941 hasConcept C71864017 @default.
- W3177247941 hasConcept C77967617 @default.
- W3177247941 hasConceptScore W3177247941C104471815 @default.
- W3177247941 hasConceptScore W3177247941C119857082 @default.
- W3177247941 hasConceptScore W3177247941C136389625 @default.
- W3177247941 hasConceptScore W3177247941C140331021 @default.
- W3177247941 hasConceptScore W3177247941C150899416 @default.
- W3177247941 hasConceptScore W3177247941C154945302 @default.
- W3177247941 hasConceptScore W3177247941C159390177 @default.
- W3177247941 hasConceptScore W3177247941C159750122 @default.
- W3177247941 hasConceptScore W3177247941C39432304 @default.
- W3177247941 hasConceptScore W3177247941C41008148 @default.
- W3177247941 hasConceptScore W3177247941C50644808 @default.
- W3177247941 hasConceptScore W3177247941C58973888 @default.
- W3177247941 hasConceptScore W3177247941C61272859 @default.
- W3177247941 hasConceptScore W3177247941C71864017 @default.
- W3177247941 hasConceptScore W3177247941C77967617 @default.
- W3177247941 hasLocation W31772479411 @default.
- W3177247941 hasOpenAccess W3177247941 @default.
- W3177247941 hasPrimaryLocation W31772479411 @default.
- W3177247941 hasRelatedWork W1492505081 @default.
- W3177247941 hasRelatedWork W2295628041 @default.
- W3177247941 hasRelatedWork W3089076581 @default.
- W3177247941 hasRelatedWork W3129213891 @default.
- W3177247941 hasRelatedWork W3162567751 @default.
- W3177247941 hasRelatedWork W3177247941 @default.
- W3177247941 hasRelatedWork W3200361725 @default.
- W3177247941 hasRelatedWork W3210156800 @default.
- W3177247941 hasRelatedWork W4226172683 @default.
- W3177247941 hasRelatedWork W4319309271 @default.
- W3177247941 isParatext "false" @default.
- W3177247941 isRetracted "false" @default.
- W3177247941 magId "3177247941" @default.
- W3177247941 workType "article" @default.