Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177263274> ?p ?o ?g. }
- W3177263274 abstract "Abstract Fragment libraries are often used in protein structure prediction, simulation and design as a means to significantly reduce the vast conformational search space. Current state-of-the-art methods for fragment library generation do not properly account for aleatory and epistemic uncertainty, respectively due to the dynamic nature of proteins and experimental errors in protein structures. Additionally, they typically rely on information that is not generally or readily available, such as homologous sequences, related protein structures and other complementary information. To address these issues, we developed BIFROST, a novel take on the fragment library problem based on a Deep Markov Model architecture combined with directional statistics for angular degrees of freedom, implemented in the deep probabilistic programming language Pyro. BIFROST is a probabilistic, generative model of the protein backbone dihedral angles conditioned solely on the amino acid sequence. BIFROST generates fragment libraries with a quality on par with current state-of-the-art methods at a fraction of the run-time, while requiring considerably less information and allowing efficient evaluation of probabilities." @default.
- W3177263274 created "2021-07-05" @default.
- W3177263274 creator A5001272634 @default.
- W3177263274 creator A5002547340 @default.
- W3177263274 creator A5045539629 @default.
- W3177263274 creator A5047821550 @default.
- W3177263274 creator A5051089005 @default.
- W3177263274 creator A5065468895 @default.
- W3177263274 date "2021-06-22" @default.
- W3177263274 modified "2023-09-25" @default.
- W3177263274 title "Efficient Generative Modelling of Protein Structure Fragments using a Deep Markov Model" @default.
- W3177263274 cites W1548178570 @default.
- W3177263274 cites W1605284188 @default.
- W3177263274 cites W1606011614 @default.
- W3177263274 cites W1607931568 @default.
- W3177263274 cites W1909149576 @default.
- W3177263274 cites W1969621320 @default.
- W3177263274 cites W1998318250 @default.
- W3177263274 cites W2026648849 @default.
- W3177263274 cites W2027966630 @default.
- W3177263274 cites W2033279214 @default.
- W3177263274 cites W2037312364 @default.
- W3177263274 cites W2043304335 @default.
- W3177263274 cites W2044145005 @default.
- W3177263274 cites W2049902088 @default.
- W3177263274 cites W2051872583 @default.
- W3177263274 cites W2056568469 @default.
- W3177263274 cites W2065283382 @default.
- W3177263274 cites W2074421756 @default.
- W3177263274 cites W2093498909 @default.
- W3177263274 cites W2094757280 @default.
- W3177263274 cites W2095036253 @default.
- W3177263274 cites W210685 @default.
- W3177263274 cites W2106976556 @default.
- W3177263274 cites W2107037205 @default.
- W3177263274 cites W2141120048 @default.
- W3177263274 cites W2153187042 @default.
- W3177263274 cites W2154106236 @default.
- W3177263274 cites W2157331557 @default.
- W3177263274 cites W2316115634 @default.
- W3177263274 cites W2327067894 @default.
- W3177263274 cites W2574528486 @default.
- W3177263274 cites W2594008643 @default.
- W3177263274 cites W2606439133 @default.
- W3177263274 cites W2948978827 @default.
- W3177263274 cites W2963499233 @default.
- W3177263274 cites W2967904513 @default.
- W3177263274 cites W2973457155 @default.
- W3177263274 cites W2980272550 @default.
- W3177263274 cites W2998028256 @default.
- W3177263274 cites W3048217718 @default.
- W3177263274 cites W3103426803 @default.
- W3177263274 cites W4246202668 @default.
- W3177263274 cites W77637080 @default.
- W3177263274 doi "https://doi.org/10.1101/2021.06.22.449406" @default.
- W3177263274 hasPublicationYear "2021" @default.
- W3177263274 type Work @default.
- W3177263274 sameAs 3177263274 @default.
- W3177263274 citedByCount "1" @default.
- W3177263274 countsByYear W31772632742021 @default.
- W3177263274 crossrefType "posted-content" @default.
- W3177263274 hasAuthorship W3177263274A5001272634 @default.
- W3177263274 hasAuthorship W3177263274A5002547340 @default.
- W3177263274 hasAuthorship W3177263274A5045539629 @default.
- W3177263274 hasAuthorship W3177263274A5047821550 @default.
- W3177263274 hasAuthorship W3177263274A5051089005 @default.
- W3177263274 hasAuthorship W3177263274A5065468895 @default.
- W3177263274 hasBestOaLocation W31772632741 @default.
- W3177263274 hasConcept C112887158 @default.
- W3177263274 hasConcept C11413529 @default.
- W3177263274 hasConcept C114289077 @default.
- W3177263274 hasConcept C119857082 @default.
- W3177263274 hasConcept C154945302 @default.
- W3177263274 hasConcept C163836022 @default.
- W3177263274 hasConcept C167966045 @default.
- W3177263274 hasConcept C178790620 @default.
- W3177263274 hasConcept C185592680 @default.
- W3177263274 hasConcept C23224414 @default.
- W3177263274 hasConcept C2776235265 @default.
- W3177263274 hasConcept C2778112365 @default.
- W3177263274 hasConcept C32909587 @default.
- W3177263274 hasConcept C39890363 @default.
- W3177263274 hasConcept C41008148 @default.
- W3177263274 hasConcept C49937458 @default.
- W3177263274 hasConcept C55493867 @default.
- W3177263274 hasConcept C80444323 @default.
- W3177263274 hasConcept C89025888 @default.
- W3177263274 hasConcept C98763669 @default.
- W3177263274 hasConceptScore W3177263274C112887158 @default.
- W3177263274 hasConceptScore W3177263274C11413529 @default.
- W3177263274 hasConceptScore W3177263274C114289077 @default.
- W3177263274 hasConceptScore W3177263274C119857082 @default.
- W3177263274 hasConceptScore W3177263274C154945302 @default.
- W3177263274 hasConceptScore W3177263274C163836022 @default.
- W3177263274 hasConceptScore W3177263274C167966045 @default.
- W3177263274 hasConceptScore W3177263274C178790620 @default.
- W3177263274 hasConceptScore W3177263274C185592680 @default.
- W3177263274 hasConceptScore W3177263274C23224414 @default.
- W3177263274 hasConceptScore W3177263274C2776235265 @default.
- W3177263274 hasConceptScore W3177263274C2778112365 @default.