Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177322353> ?p ?o ?g. }
- W3177322353 endingPage "4291" @default.
- W3177322353 startingPage "4291" @default.
- W3177322353 abstract "A target’s movements and radar cross sections are the key parameters to consider when designing a radar sensor for a given application. This paper shows the feasibility and effectiveness of using 24 GHz radar built-in low-noise microwave amplifiers for detecting an object. For this purpose a supervised machine learning model (SVM) is trained using the recorded data to classify the targets based on their cross sections into four categories. The trained classifiers were used to classify the objects with varying distances from the receiver. The SVM classification is also compared with three methods based on binary classification: a one-against-all classification, a one-against-one classification, and a directed acyclic graph SVM. The level of accuracy is approximately 96.6%, and an F1-score of 96.5% is achieved using the one-against-one SVM method with an RFB kernel. The proposed contactless radar in combination with an SVM algorithm can be used to detect and categorize a target in real time without a signal processing toolbox." @default.
- W3177322353 created "2021-07-05" @default.
- W3177322353 creator A5000072843 @default.
- W3177322353 creator A5018709001 @default.
- W3177322353 creator A5061955956 @default.
- W3177322353 creator A5066814110 @default.
- W3177322353 creator A5073078799 @default.
- W3177322353 date "2021-06-23" @default.
- W3177322353 modified "2023-10-06" @default.
- W3177322353 title "Machine Learning Based Object Classification and Identification Scheme Using an Embedded Millimeter-Wave Radar Sensor" @default.
- W3177322353 cites W1968135554 @default.
- W3177322353 cites W1975976087 @default.
- W3177322353 cites W2029711068 @default.
- W3177322353 cites W2078409967 @default.
- W3177322353 cites W2087149061 @default.
- W3177322353 cites W2099743383 @default.
- W3177322353 cites W2099748721 @default.
- W3177322353 cites W2155445772 @default.
- W3177322353 cites W2157770256 @default.
- W3177322353 cites W2162632502 @default.
- W3177322353 cites W2165913693 @default.
- W3177322353 cites W2328969419 @default.
- W3177322353 cites W2790943595 @default.
- W3177322353 cites W2792319557 @default.
- W3177322353 cites W2792724803 @default.
- W3177322353 cites W2885499182 @default.
- W3177322353 cites W2885517796 @default.
- W3177322353 cites W2887149340 @default.
- W3177322353 cites W2898475504 @default.
- W3177322353 cites W2901825427 @default.
- W3177322353 cites W2904407253 @default.
- W3177322353 cites W2910037493 @default.
- W3177322353 cites W2943251243 @default.
- W3177322353 cites W2958504736 @default.
- W3177322353 cites W2973198612 @default.
- W3177322353 cites W2978614058 @default.
- W3177322353 cites W3003668253 @default.
- W3177322353 cites W3005455080 @default.
- W3177322353 cites W3011800639 @default.
- W3177322353 cites W3013353125 @default.
- W3177322353 cites W3022121429 @default.
- W3177322353 cites W3022559717 @default.
- W3177322353 cites W3024777248 @default.
- W3177322353 cites W3075394774 @default.
- W3177322353 cites W3100449589 @default.
- W3177322353 cites W3101180469 @default.
- W3177322353 cites W3104100176 @default.
- W3177322353 cites W3114558802 @default.
- W3177322353 cites W4239510810 @default.
- W3177322353 doi "https://doi.org/10.3390/s21134291" @default.
- W3177322353 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8272183" @default.
- W3177322353 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34201765" @default.
- W3177322353 hasPublicationYear "2021" @default.
- W3177322353 type Work @default.
- W3177322353 sameAs 3177322353 @default.
- W3177322353 citedByCount "8" @default.
- W3177322353 countsByYear W31773223532021 @default.
- W3177322353 countsByYear W31773223532022 @default.
- W3177322353 countsByYear W31773223532023 @default.
- W3177322353 crossrefType "journal-article" @default.
- W3177322353 hasAuthorship W3177322353A5000072843 @default.
- W3177322353 hasAuthorship W3177322353A5018709001 @default.
- W3177322353 hasAuthorship W3177322353A5061955956 @default.
- W3177322353 hasAuthorship W3177322353A5066814110 @default.
- W3177322353 hasAuthorship W3177322353A5073078799 @default.
- W3177322353 hasBestOaLocation W31773223531 @default.
- W3177322353 hasConcept C114614502 @default.
- W3177322353 hasConcept C119857082 @default.
- W3177322353 hasConcept C12267149 @default.
- W3177322353 hasConcept C153180895 @default.
- W3177322353 hasConcept C154945302 @default.
- W3177322353 hasConcept C31972630 @default.
- W3177322353 hasConcept C33923547 @default.
- W3177322353 hasConcept C41008148 @default.
- W3177322353 hasConcept C52622490 @default.
- W3177322353 hasConcept C554190296 @default.
- W3177322353 hasConcept C74193536 @default.
- W3177322353 hasConcept C76155785 @default.
- W3177322353 hasConceptScore W3177322353C114614502 @default.
- W3177322353 hasConceptScore W3177322353C119857082 @default.
- W3177322353 hasConceptScore W3177322353C12267149 @default.
- W3177322353 hasConceptScore W3177322353C153180895 @default.
- W3177322353 hasConceptScore W3177322353C154945302 @default.
- W3177322353 hasConceptScore W3177322353C31972630 @default.
- W3177322353 hasConceptScore W3177322353C33923547 @default.
- W3177322353 hasConceptScore W3177322353C41008148 @default.
- W3177322353 hasConceptScore W3177322353C52622490 @default.
- W3177322353 hasConceptScore W3177322353C554190296 @default.
- W3177322353 hasConceptScore W3177322353C74193536 @default.
- W3177322353 hasConceptScore W3177322353C76155785 @default.
- W3177322353 hasIssue "13" @default.
- W3177322353 hasLocation W31773223531 @default.
- W3177322353 hasLocation W31773223532 @default.
- W3177322353 hasOpenAccess W3177322353 @default.
- W3177322353 hasPrimaryLocation W31773223531 @default.
- W3177322353 hasRelatedWork W2041399278 @default.
- W3177322353 hasRelatedWork W2056016498 @default.
- W3177322353 hasRelatedWork W2136184105 @default.