Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177483604> ?p ?o ?g. }
- W3177483604 abstract "Massive access is a critical design challenge of Internet of Things (IoT) networks. In this paper, we consider the grant-free uplink transmission of an IoT network with a multiple-antenna base station (BS) and a large number of single-antenna IoT devices. Taking into account the sporadic nature of IoT devices, we formulate the joint activity detection and channel estimation (JADCE) problem as a group-sparse matrix estimation problem. This problem can be solved by applying the existing compressed sensing techniques, which however either suffer from high computational complexities or lack of algorithm robustness. To this end, we propose a novel algorithm unrolling framework based on the deep neural network to simultaneously achieve low computational complexity and high robustness for solving the JADCE problem. Specifically, we map the original iterative shrinkage thresholding algorithm (ISTA) into an unrolled recurrent neural network (RNN), thereby improving the convergence rate and computational efficiency through end-to-end training. Moreover, the proposed algorithm unrolling approach inherits the structure and domain knowledge of the ISTA, thereby maintaining the algorithm robustness, which can handle non-Gaussian preamble sequence matrix in massive access. With rigorous theoretical analysis, we further simplify the unrolled network structure by reducing the redundant training parameters. Furthermore, we prove that the simplified unrolled deep neural network structures enjoy a linear convergence rate. Extensive simulations based on various preamble signatures show that the proposed unrolled networks outperform the existing methods in terms of the convergence rate, robustness and estimation accuracy." @default.
- W3177483604 created "2021-07-05" @default.
- W3177483604 creator A5022499594 @default.
- W3177483604 creator A5027976548 @default.
- W3177483604 creator A5041989556 @default.
- W3177483604 creator A5082059715 @default.
- W3177483604 date "2021-06-19" @default.
- W3177483604 modified "2023-10-18" @default.
- W3177483604 title "Algorithm Unrolling for Massive Access via Deep Neural Network with Theoretical Guarantee" @default.
- W3177483604 cites W1757098471 @default.
- W3177483604 cites W1984830458 @default.
- W3177483604 cites W2020282020 @default.
- W3177483604 cites W2051275493 @default.
- W3177483604 cites W2109125555 @default.
- W3177483604 cites W2117575248 @default.
- W3177483604 cites W2118103795 @default.
- W3177483604 cites W2136235822 @default.
- W3177483604 cites W2138019504 @default.
- W3177483604 cites W2616867685 @default.
- W3177483604 cites W2619204584 @default.
- W3177483604 cites W2706056020 @default.
- W3177483604 cites W2784187484 @default.
- W3177483604 cites W2784331297 @default.
- W3177483604 cites W2794457407 @default.
- W3177483604 cites W2798574788 @default.
- W3177483604 cites W2811365745 @default.
- W3177483604 cites W2883094398 @default.
- W3177483604 cites W2887019724 @default.
- W3177483604 cites W2889134685 @default.
- W3177483604 cites W2890736047 @default.
- W3177483604 cites W2907946893 @default.
- W3177483604 cites W2910665221 @default.
- W3177483604 cites W2918414413 @default.
- W3177483604 cites W2962849485 @default.
- W3177483604 cites W2963199294 @default.
- W3177483604 cites W2963590174 @default.
- W3177483604 cites W2963797719 @default.
- W3177483604 cites W2970126910 @default.
- W3177483604 cites W2980263967 @default.
- W3177483604 cites W2981871664 @default.
- W3177483604 cites W2998578058 @default.
- W3177483604 cites W3001370401 @default.
- W3177483604 cites W3011730771 @default.
- W3177483604 cites W3012413020 @default.
- W3177483604 cites W3015761657 @default.
- W3177483604 cites W3015801342 @default.
- W3177483604 cites W3045073837 @default.
- W3177483604 cites W3096252532 @default.
- W3177483604 cites W3100120649 @default.
- W3177483604 cites W3102141882 @default.
- W3177483604 cites W3112170415 @default.
- W3177483604 cites W3133902371 @default.
- W3177483604 doi "https://doi.org/10.48550/arxiv.2106.10426" @default.
- W3177483604 hasPublicationYear "2021" @default.
- W3177483604 type Work @default.
- W3177483604 sameAs 3177483604 @default.
- W3177483604 citedByCount "0" @default.
- W3177483604 crossrefType "posted-content" @default.
- W3177483604 hasAuthorship W3177483604A5022499594 @default.
- W3177483604 hasAuthorship W3177483604A5027976548 @default.
- W3177483604 hasAuthorship W3177483604A5041989556 @default.
- W3177483604 hasAuthorship W3177483604A5082059715 @default.
- W3177483604 hasBestOaLocation W31774836041 @default.
- W3177483604 hasConcept C104317684 @default.
- W3177483604 hasConcept C113775141 @default.
- W3177483604 hasConcept C11413529 @default.
- W3177483604 hasConcept C126255220 @default.
- W3177483604 hasConcept C127162648 @default.
- W3177483604 hasConcept C138660444 @default.
- W3177483604 hasConcept C154945302 @default.
- W3177483604 hasConcept C179799912 @default.
- W3177483604 hasConcept C185592680 @default.
- W3177483604 hasConcept C2780691134 @default.
- W3177483604 hasConcept C31258907 @default.
- W3177483604 hasConcept C33923547 @default.
- W3177483604 hasConcept C41008148 @default.
- W3177483604 hasConcept C50644808 @default.
- W3177483604 hasConcept C55493867 @default.
- W3177483604 hasConcept C57869625 @default.
- W3177483604 hasConcept C63479239 @default.
- W3177483604 hasConceptScore W3177483604C104317684 @default.
- W3177483604 hasConceptScore W3177483604C113775141 @default.
- W3177483604 hasConceptScore W3177483604C11413529 @default.
- W3177483604 hasConceptScore W3177483604C126255220 @default.
- W3177483604 hasConceptScore W3177483604C127162648 @default.
- W3177483604 hasConceptScore W3177483604C138660444 @default.
- W3177483604 hasConceptScore W3177483604C154945302 @default.
- W3177483604 hasConceptScore W3177483604C179799912 @default.
- W3177483604 hasConceptScore W3177483604C185592680 @default.
- W3177483604 hasConceptScore W3177483604C2780691134 @default.
- W3177483604 hasConceptScore W3177483604C31258907 @default.
- W3177483604 hasConceptScore W3177483604C33923547 @default.
- W3177483604 hasConceptScore W3177483604C41008148 @default.
- W3177483604 hasConceptScore W3177483604C50644808 @default.
- W3177483604 hasConceptScore W3177483604C55493867 @default.
- W3177483604 hasConceptScore W3177483604C57869625 @default.
- W3177483604 hasConceptScore W3177483604C63479239 @default.
- W3177483604 hasLocation W31774836041 @default.
- W3177483604 hasOpenAccess W3177483604 @default.
- W3177483604 hasPrimaryLocation W31774836041 @default.