Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177484153> ?p ?o ?g. }
- W3177484153 endingPage "587" @default.
- W3177484153 startingPage "578" @default.
- W3177484153 abstract "<p id=C3>The incidence of breast cancer, one of the most common malignancies affecting women, is increasing significantly worldwide. Given the rapid development of medical technology, early and effective diagnostic methods should be able to improve the survival rate and quality of life of patients suffering from disease. However, although existing treatment options, including chemotherapy and endocrine therapies, have greatly improved the survival of patients, disease recurrence in the long term remains a challenge. Because breast cancer is a heterogeneous and complex disease, which includes several subtypes with different responses to treatment, the continual acquisition of spatial information on related biomolecules is important for accurate tracking of the tumor heterogeneity and microenvironment. At present, prognostic and predictive biomarkers, such as human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), Ki-67, progesterone receptor (PR), and programmed death-ligand 1 (PD-L1), are validated for use in the decision-making over breast cancer therapies. Mass spectrometry imaging (MSI) is a useful technique for acquiring molecular information about biological tissues, including qualitative, quantitative, and spatial distribution information, because it is based on the ion mass-to-charge ratio of the biomolecules and avoids the need for their labeling and staining. MSI can also acquire molecular information on drugs and their metabolites, as well as that on molecules related to endogenous metabolism, such as lipids, peptides, and proteins. Of the various ion sources available for MSI, the most popular are matrix-assisted laser desorption ionization, secondary ion mass spectrometry, and desorption electrospray ionization, and modifications or derivatives of these sources are still emerging. MSI-based techniques provide new ideas and directions for the molecular typing of tumors, as well as knowledge on the metabolism of related antitumor drugs.<br/> The process of MSI analysis generally involves tissue acquisition, section preparation, mass spectrometry ionization, map acquisition, and data analysis, with the most crucial step being sample handling to preserve the original chemical and location information of the analytes. The sample preparation steps are sample collection, storage, and slicing, tissue pretreatment, and matrix spraying. This review focuses mainly on the preparation of biological specimens for MSI analysis and the recent progress made in breast cancer research with this technology. With regard to sample preparation, four aspects are discussed: small-molecule samples, macromolecular samples, paraffin-embedded samples, and matrix spraying methods. To solve the difficulties associated with small-molecule sample processing, including the low extraction efficiency for certain lipids and matrix interference in the low-molecular-weight region, the addition of a cationic reagent to the extractant, the use of a new matrix, and tissue derivatization have been used. In the review of macromolecular sample processing, several different washing protocols are summarized. With regard to paraffin-embedded samples, the solutions to several common problems are reviewed. Additionally, the application of MSI to three models associated with breast cancer research is discussed, viz. cell models, animal models, and clinical tumor samples. For these models, MSI technology is used to evaluate the penetration and metabolism of antitumor agents in breast cancer, which can better reflect the malignant transformation of cells and changes in the microenvironment. With regard to lipid molecules, the use of MSI to study differences in their spatial distribution may provide a better understanding of the relationship between lipid metabolism and cancer. This review also provides important information for accurate molecular typing and drug screening in cancer research. Analytically, the tissue preparation method, tissue storage conditions, instrumentation choice, and experimental parameters have all been associated with variability in the imaging and mass-spectral qualities of MSI, thereby affecting the performance of the method. Large-scale studies using diverse sample cohorts are therefore needed to properly evaluate the robustness of MSI molecular markers and workflows for the clinical diagnosis and characterization of breast cancer variants. Our review provides strong evidence that MSI is a reliable, highly reproducible, and rapid technique for the diagnosis of breast cancer biopsies and may be useful in clinical application." @default.
- W3177484153 created "2021-07-05" @default.
- W3177484153 creator A5030101186 @default.
- W3177484153 creator A5034995105 @default.
- W3177484153 creator A5036780946 @default.
- W3177484153 creator A5048981672 @default.
- W3177484153 creator A5060043446 @default.
- W3177484153 creator A5078326674 @default.
- W3177484153 creator A5080134387 @default.
- W3177484153 creator A5090586726 @default.
- W3177484153 date "2021-06-01" @default.
- W3177484153 modified "2023-09-26" @default.
- W3177484153 title "质谱成像技术及其在乳腺癌研究中的应用" @default.
- W3177484153 cites W1984502485 @default.
- W3177484153 cites W2057888153 @default.
- W3177484153 cites W2072827936 @default.
- W3177484153 cites W2134171575 @default.
- W3177484153 cites W2139105575 @default.
- W3177484153 cites W2164338148 @default.
- W3177484153 cites W2166929869 @default.
- W3177484153 cites W2256258997 @default.
- W3177484153 cites W2262130637 @default.
- W3177484153 cites W2275232620 @default.
- W3177484153 cites W2289368401 @default.
- W3177484153 cites W2299018850 @default.
- W3177484153 cites W2467776903 @default.
- W3177484153 cites W2490509633 @default.
- W3177484153 cites W2529121168 @default.
- W3177484153 cites W2529484206 @default.
- W3177484153 cites W2586697710 @default.
- W3177484153 cites W2615493276 @default.
- W3177484153 cites W2765811273 @default.
- W3177484153 cites W2767553029 @default.
- W3177484153 cites W2769384705 @default.
- W3177484153 cites W2772702255 @default.
- W3177484153 cites W2773656206 @default.
- W3177484153 cites W2781738405 @default.
- W3177484153 cites W2793568055 @default.
- W3177484153 cites W2801031106 @default.
- W3177484153 cites W2877917270 @default.
- W3177484153 cites W2883609331 @default.
- W3177484153 cites W2889669338 @default.
- W3177484153 cites W2889867112 @default.
- W3177484153 cites W2902179211 @default.
- W3177484153 cites W2902835217 @default.
- W3177484153 cites W2907132019 @default.
- W3177484153 cites W2916898158 @default.
- W3177484153 cites W2932601740 @default.
- W3177484153 cites W2936235379 @default.
- W3177484153 cites W2939398000 @default.
- W3177484153 cites W2940019938 @default.
- W3177484153 cites W2946665128 @default.
- W3177484153 cites W2954548889 @default.
- W3177484153 cites W2961180135 @default.
- W3177484153 cites W2968640509 @default.
- W3177484153 cites W2971524083 @default.
- W3177484153 cites W2972932111 @default.
- W3177484153 cites W2985464119 @default.
- W3177484153 cites W2995890901 @default.
- W3177484153 cites W2999417355 @default.
- W3177484153 cites W2999610835 @default.
- W3177484153 cites W3003457256 @default.
- W3177484153 cites W3009727378 @default.
- W3177484153 cites W3017688560 @default.
- W3177484153 cites W3035373022 @default.
- W3177484153 cites W332396864 @default.
- W3177484153 doi "https://doi.org/10.3724/sp.j.1123.2020.10005" @default.
- W3177484153 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34227318" @default.
- W3177484153 hasPublicationYear "2021" @default.
- W3177484153 type Work @default.
- W3177484153 sameAs 3177484153 @default.
- W3177484153 citedByCount "0" @default.
- W3177484153 crossrefType "journal-article" @default.
- W3177484153 hasAuthorship W3177484153A5030101186 @default.
- W3177484153 hasAuthorship W3177484153A5034995105 @default.
- W3177484153 hasAuthorship W3177484153A5036780946 @default.
- W3177484153 hasAuthorship W3177484153A5048981672 @default.
- W3177484153 hasAuthorship W3177484153A5060043446 @default.
- W3177484153 hasAuthorship W3177484153A5078326674 @default.
- W3177484153 hasAuthorship W3177484153A5080134387 @default.
- W3177484153 hasAuthorship W3177484153A5090586726 @default.
- W3177484153 hasBestOaLocation W31774841531 @default.
- W3177484153 hasConcept C121608353 @default.
- W3177484153 hasConcept C126322002 @default.
- W3177484153 hasConcept C143998085 @default.
- W3177484153 hasConcept C162356407 @default.
- W3177484153 hasConcept C185592680 @default.
- W3177484153 hasConcept C24066741 @default.
- W3177484153 hasConcept C43617362 @default.
- W3177484153 hasConcept C502942594 @default.
- W3177484153 hasConcept C530470458 @default.
- W3177484153 hasConcept C60644358 @default.
- W3177484153 hasConcept C70721500 @default.
- W3177484153 hasConcept C71924100 @default.
- W3177484153 hasConcept C84606932 @default.
- W3177484153 hasConcept C86803240 @default.
- W3177484153 hasConceptScore W3177484153C121608353 @default.
- W3177484153 hasConceptScore W3177484153C126322002 @default.