Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177493669> ?p ?o ?g. }
- W3177493669 abstract "Abstract Sugariness is one of the most important indicators to measure the quality of Syzygium samarangense , which is also known as the wax apple. In general, farmers used to measure sugariness by testing the extracted juice of the wax apple products. Such a destructive way to measure sugariness is not only labor-consuming but also a wasting of products. Therefore, non-destructive and quick techniques for measuring sugariness would be significant for wax apple supply chains. Traditionally, the non-destructive method to predict the sugariness or the other indicators of the fruits was based on the reflectance spectra or Hyperspectral Images (HSIs) using linear regression such as Multi-Linear Regression (MLR), Principal Component Regression (PCR), and Partial Least Square Regression (PLSR), etc. However, these regression methods are usually too simple to precisely estimate the complicated mapping between the reflectance spectra or HSIs and the sugariness. This study presents the deep learning methods for sugariness prediction using the reflectance spectra or HSIs from the bottom of the wax apple. A non-destructive imaging system fabricated with two spectrum sensors and light sources is implemented to acquire the visible and infrared lights with a range of wavelengths. In particular, a specialized Convolutional Neural Network (CNN) with hyperspectral imaging is proposed by investigating the effect of different wavelength bands for sugariness prediction. In the experiments, the ground-truth value of sugariness is obtained from a commercial refractometer. The experimental results show that using the whole band range between 400 nm and 1700 nm achieves the best performance in terms of Brix error. CNN models attain the Brix error of ±0.552, smaller than ±0.597 using Feedforward Neural Network (FNN). Significantly, the CNN’s test results show that the minor error in Brix interval 0-10°Brix and 10-11°Brix are ±0.551 and ±0.408, these results indicate that the model would have the capability to predict if sugariness is below 10°Brix or not, which would be similar to the human tongue. These results are much better than ±1.441 and ±1.379 by using PCR and PLSR, respectively. Moreover, this study provides the test error in each Brix interval within one °Brix, and the results show that the test error is varied considerably within different Brix intervals, especially on PCR and PLSR. On the other hand, FNN and CNN obtain robust results in terms of test error." @default.
- W3177493669 created "2021-07-05" @default.
- W3177493669 creator A5002247011 @default.
- W3177493669 creator A5029730541 @default.
- W3177493669 creator A5036991258 @default.
- W3177493669 creator A5041805173 @default.
- W3177493669 creator A5050081234 @default.
- W3177493669 creator A5052200773 @default.
- W3177493669 creator A5061908942 @default.
- W3177493669 creator A5087628267 @default.
- W3177493669 creator A5087798962 @default.
- W3177493669 creator A5091156295 @default.
- W3177493669 date "2021-07-02" @default.
- W3177493669 modified "2023-10-18" @default.
- W3177493669 title "Hyperspectral Imaging and Convolutional Learning for Sugariness Prediction: Example of Syzygium Samarangense" @default.
- W3177493669 cites W1533861849 @default.
- W3177493669 cites W1596181374 @default.
- W3177493669 cites W1986780401 @default.
- W3177493669 cites W2029750610 @default.
- W3177493669 cites W2040870580 @default.
- W3177493669 cites W2049066421 @default.
- W3177493669 cites W2051968191 @default.
- W3177493669 cites W2053767967 @default.
- W3177493669 cites W2073503722 @default.
- W3177493669 cites W2087263574 @default.
- W3177493669 cites W2109606373 @default.
- W3177493669 cites W2112796928 @default.
- W3177493669 cites W2187089797 @default.
- W3177493669 cites W2341109226 @default.
- W3177493669 cites W2906295920 @default.
- W3177493669 cites W2973088056 @default.
- W3177493669 cites W3003732786 @default.
- W3177493669 cites W3022746210 @default.
- W3177493669 cites W3037597928 @default.
- W3177493669 cites W3122790351 @default.
- W3177493669 cites W904470793 @default.
- W3177493669 doi "https://doi.org/10.21203/rs.3.rs-663300/v1" @default.
- W3177493669 hasPublicationYear "2021" @default.
- W3177493669 type Work @default.
- W3177493669 sameAs 3177493669 @default.
- W3177493669 citedByCount "0" @default.
- W3177493669 crossrefType "posted-content" @default.
- W3177493669 hasAuthorship W3177493669A5002247011 @default.
- W3177493669 hasAuthorship W3177493669A5029730541 @default.
- W3177493669 hasAuthorship W3177493669A5036991258 @default.
- W3177493669 hasAuthorship W3177493669A5041805173 @default.
- W3177493669 hasAuthorship W3177493669A5050081234 @default.
- W3177493669 hasAuthorship W3177493669A5052200773 @default.
- W3177493669 hasAuthorship W3177493669A5061908942 @default.
- W3177493669 hasAuthorship W3177493669A5087628267 @default.
- W3177493669 hasAuthorship W3177493669A5087798962 @default.
- W3177493669 hasAuthorship W3177493669A5091156295 @default.
- W3177493669 hasBestOaLocation W31774936691 @default.
- W3177493669 hasConcept C105795698 @default.
- W3177493669 hasConcept C124101348 @default.
- W3177493669 hasConcept C127313418 @default.
- W3177493669 hasConcept C153033020 @default.
- W3177493669 hasConcept C153180895 @default.
- W3177493669 hasConcept C154945302 @default.
- W3177493669 hasConcept C159078339 @default.
- W3177493669 hasConcept C159985019 @default.
- W3177493669 hasConcept C186060115 @default.
- W3177493669 hasConcept C192562407 @default.
- W3177493669 hasConcept C22354355 @default.
- W3177493669 hasConcept C27438332 @default.
- W3177493669 hasConcept C2780009758 @default.
- W3177493669 hasConcept C33923547 @default.
- W3177493669 hasConcept C41008148 @default.
- W3177493669 hasConcept C48921125 @default.
- W3177493669 hasConcept C62649853 @default.
- W3177493669 hasConcept C74887250 @default.
- W3177493669 hasConcept C81363708 @default.
- W3177493669 hasConcept C83546350 @default.
- W3177493669 hasConcept C86803240 @default.
- W3177493669 hasConceptScore W3177493669C105795698 @default.
- W3177493669 hasConceptScore W3177493669C124101348 @default.
- W3177493669 hasConceptScore W3177493669C127313418 @default.
- W3177493669 hasConceptScore W3177493669C153033020 @default.
- W3177493669 hasConceptScore W3177493669C153180895 @default.
- W3177493669 hasConceptScore W3177493669C154945302 @default.
- W3177493669 hasConceptScore W3177493669C159078339 @default.
- W3177493669 hasConceptScore W3177493669C159985019 @default.
- W3177493669 hasConceptScore W3177493669C186060115 @default.
- W3177493669 hasConceptScore W3177493669C192562407 @default.
- W3177493669 hasConceptScore W3177493669C22354355 @default.
- W3177493669 hasConceptScore W3177493669C27438332 @default.
- W3177493669 hasConceptScore W3177493669C2780009758 @default.
- W3177493669 hasConceptScore W3177493669C33923547 @default.
- W3177493669 hasConceptScore W3177493669C41008148 @default.
- W3177493669 hasConceptScore W3177493669C48921125 @default.
- W3177493669 hasConceptScore W3177493669C62649853 @default.
- W3177493669 hasConceptScore W3177493669C74887250 @default.
- W3177493669 hasConceptScore W3177493669C81363708 @default.
- W3177493669 hasConceptScore W3177493669C83546350 @default.
- W3177493669 hasConceptScore W3177493669C86803240 @default.
- W3177493669 hasLocation W31774936691 @default.
- W3177493669 hasOpenAccess W3177493669 @default.
- W3177493669 hasPrimaryLocation W31774936691 @default.
- W3177493669 hasRelatedWork W1496127902 @default.
- W3177493669 hasRelatedWork W1573501504 @default.