Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177629013> ?p ?o ?g. }
- W3177629013 abstract "Our way of grasping objects is challenging for efficient, intelligent and optimal grasp by COBOTs. To streamline the process, here we use deep learning techniques to help robots learn to generate and execute appropriate grasps quickly. We developed a Generative Inception Neural Network (GI-NNet) model, capable of generating antipodal robotic grasps on seen as well as unseen objects. It is trained on Cornell Grasping Dataset (CGD) and attained 98.87% grasp pose accuracy for detecting both regular and irregular shaped objects from RGB-Depth (RGB-D) images while requiring only one third of the network trainable parameters as compared to the existing approaches. However, to attain this level of performance the model requires the entire 90% of the available labelled data of CGD keeping only 10% labelled data for testing which makes it vulnerable to poor generalization. Furthermore, getting sufficient and quality labelled dataset is becoming increasingly difficult keeping in pace with the requirement of gigantic networks. To address these issues, we attach our model as a decoder with a semi-supervised learning based architecture known as Vector Quantized Variational Auto Encoder (VQVAE), which works efficiently when trained both with the available labelled and unlabelled data. The proposed model, which we name as Representation based GI-NNet (RGI-NNet), has been trained with various splits of label data on CGD with as minimum as 10% labelled dataset together with latent embedding generated from VQVAE up to 50% labelled data with latent embedding obtained from VQVAE. The performance level, in terms of grasp pose accuracy of RGI-NNet, varies between 92.13% to 95.6% which is far better than several existing models trained with only labelled dataset. For the performance verification of both GI-NNet and RGI-NNet models, we use Anukul (Baxter) hardware cobot." @default.
- W3177629013 created "2021-07-19" @default.
- W3177629013 creator A5044168777 @default.
- W3177629013 creator A5059369765 @default.
- W3177629013 creator A5067124443 @default.
- W3177629013 creator A5076307665 @default.
- W3177629013 date "2021-07-15" @default.
- W3177629013 modified "2023-09-27" @default.
- W3177629013 title "GI-NNet & RGI-NNet: Development of Robotic Grasp Pose Models, Trainable with Large as well as Limited Labelled Training Datasets, under supervised and semi supervised paradigms." @default.
- W3177629013 cites W1677182931 @default.
- W3177629013 cites W1820657498 @default.
- W3177629013 cites W1892339738 @default.
- W3177629013 cites W1895577753 @default.
- W3177629013 cites W1978580730 @default.
- W3177629013 cites W1994200336 @default.
- W3177629013 cites W1999156278 @default.
- W3177629013 cites W2005824379 @default.
- W3177629013 cites W2041376653 @default.
- W3177629013 cites W2089630413 @default.
- W3177629013 cites W2097117768 @default.
- W3177629013 cites W2113735881 @default.
- W3177629013 cites W2123435073 @default.
- W3177629013 cites W2183341477 @default.
- W3177629013 cites W2194775991 @default.
- W3177629013 cites W2201912979 @default.
- W3177629013 cites W2300618187 @default.
- W3177629013 cites W2523315006 @default.
- W3177629013 cites W2736762515 @default.
- W3177629013 cites W2798255267 @default.
- W3177629013 cites W2808521881 @default.
- W3177629013 cites W2890646997 @default.
- W3177629013 cites W2894078852 @default.
- W3177629013 cites W2914944935 @default.
- W3177629013 cites W2962821282 @default.
- W3177629013 cites W2963033241 @default.
- W3177629013 cites W2963326767 @default.
- W3177629013 cites W2967869116 @default.
- W3177629013 cites W3082171809 @default.
- W3177629013 cites W3130885760 @default.
- W3177629013 hasPublicationYear "2021" @default.
- W3177629013 type Work @default.
- W3177629013 sameAs 3177629013 @default.
- W3177629013 citedByCount "0" @default.
- W3177629013 crossrefType "posted-content" @default.
- W3177629013 hasAuthorship W3177629013A5044168777 @default.
- W3177629013 hasAuthorship W3177629013A5059369765 @default.
- W3177629013 hasAuthorship W3177629013A5067124443 @default.
- W3177629013 hasAuthorship W3177629013A5076307665 @default.
- W3177629013 hasConcept C111919701 @default.
- W3177629013 hasConcept C119857082 @default.
- W3177629013 hasConcept C134306372 @default.
- W3177629013 hasConcept C154945302 @default.
- W3177629013 hasConcept C171268870 @default.
- W3177629013 hasConcept C177148314 @default.
- W3177629013 hasConcept C17744445 @default.
- W3177629013 hasConcept C199360897 @default.
- W3177629013 hasConcept C199539241 @default.
- W3177629013 hasConcept C2776359362 @default.
- W3177629013 hasConcept C31972630 @default.
- W3177629013 hasConcept C33923547 @default.
- W3177629013 hasConcept C41008148 @default.
- W3177629013 hasConcept C41608201 @default.
- W3177629013 hasConcept C94625758 @default.
- W3177629013 hasConcept C98045186 @default.
- W3177629013 hasConceptScore W3177629013C111919701 @default.
- W3177629013 hasConceptScore W3177629013C119857082 @default.
- W3177629013 hasConceptScore W3177629013C134306372 @default.
- W3177629013 hasConceptScore W3177629013C154945302 @default.
- W3177629013 hasConceptScore W3177629013C171268870 @default.
- W3177629013 hasConceptScore W3177629013C177148314 @default.
- W3177629013 hasConceptScore W3177629013C17744445 @default.
- W3177629013 hasConceptScore W3177629013C199360897 @default.
- W3177629013 hasConceptScore W3177629013C199539241 @default.
- W3177629013 hasConceptScore W3177629013C2776359362 @default.
- W3177629013 hasConceptScore W3177629013C31972630 @default.
- W3177629013 hasConceptScore W3177629013C33923547 @default.
- W3177629013 hasConceptScore W3177629013C41008148 @default.
- W3177629013 hasConceptScore W3177629013C41608201 @default.
- W3177629013 hasConceptScore W3177629013C94625758 @default.
- W3177629013 hasConceptScore W3177629013C98045186 @default.
- W3177629013 hasLocation W31776290131 @default.
- W3177629013 hasOpenAccess W3177629013 @default.
- W3177629013 hasPrimaryLocation W31776290131 @default.
- W3177629013 hasRelatedWork W2887338480 @default.
- W3177629013 hasRelatedWork W2902356949 @default.
- W3177629013 hasRelatedWork W2947485218 @default.
- W3177629013 hasRelatedWork W2958609736 @default.
- W3177629013 hasRelatedWork W2963785012 @default.
- W3177629013 hasRelatedWork W2968706510 @default.
- W3177629013 hasRelatedWork W3017049714 @default.
- W3177629013 hasRelatedWork W3024821730 @default.
- W3177629013 hasRelatedWork W3036475571 @default.
- W3177629013 hasRelatedWork W3039900698 @default.
- W3177629013 hasRelatedWork W3046398855 @default.
- W3177629013 hasRelatedWork W3091067756 @default.
- W3177629013 hasRelatedWork W3091812030 @default.
- W3177629013 hasRelatedWork W3107606673 @default.
- W3177629013 hasRelatedWork W3109200851 @default.
- W3177629013 hasRelatedWork W3124610200 @default.
- W3177629013 hasRelatedWork W3126242103 @default.