Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177669185> ?p ?o ?g. }
- W3177669185 endingPage "295" @default.
- W3177669185 startingPage "273" @default.
- W3177669185 abstract "The rapid growth in the number of devices and their connectivity has enlarged the attack surface and made cyber systems more vulnerable. As attackers become increasingly sophisticated and resourceful, mere reliance on traditional cyber protection, such as intrusion detection, firewalls, and encryption, is insufficient to secure the cyber systems. Cyber resilience provides a new security paradigm that complements inadequate protection with resilience mechanisms. A Cyber-Resilient Mechanism (CRM) adapts to the known or zero-day threats and uncertainties in real-time and strategically responds to them to maintain the critical functions of the cyber systems in the event of successful attacks. Feedback architectures play a pivotal role in enabling the online sensing, reasoning, and actuation process of the CRM. Reinforcement Learning (RL) is an important gathering of algorithms that epitomize the feedback architectures for cyber resilience. It allows the CRM to provide dynamic and sequential responses to attacks with limited or without prior knowledge of the environment and the attacker. In this work, we review the literature on RL for cyber resilience and discuss the cyber-resilient defenses against three major types of vulnerabilities, i.e., posture-related, information-related, and human-related vulnerabilities. We introduce moving target defense, defensive cyber deception, and assistive human security technologies as three application domains of CRMs to elaborate on their designs. The RL algorithms also have vulnerabilities themselves. We explain the major vulnerabilities of RL and present develop several attack models where the attacker target the information exchanged between the environment and the agent: the rewards, the state observations, and the action commands. We show that the attacker can trick the RL agent into learning a nefarious policy with minimum attacking effort. The paper introduces several defense methods to secure the RL-enabled systems from these attacks. However, there is still a lack of works that focuses on the defensive mechanisms for RL-enabled systems. Last but not least, we discuss the future challenges of RL for cyber security and resilience and emerging applications of RL-based CRMs." @default.
- W3177669185 created "2021-07-19" @default.
- W3177669185 creator A5060454132 @default.
- W3177669185 creator A5081500464 @default.
- W3177669185 creator A5089244984 @default.
- W3177669185 date "2022-01-01" @default.
- W3177669185 modified "2023-10-17" @default.
- W3177669185 title "Reinforcement Learning for feedback-enabled cyber resilience" @default.
- W3177669185 cites W1851422430 @default.
- W3177669185 cites W1965604362 @default.
- W3177669185 cites W1975648952 @default.
- W3177669185 cites W2010739835 @default.
- W3177669185 cites W2031857436 @default.
- W3177669185 cites W2039427951 @default.
- W3177669185 cites W2045346246 @default.
- W3177669185 cites W2062132646 @default.
- W3177669185 cites W2065776696 @default.
- W3177669185 cites W2067064328 @default.
- W3177669185 cites W2069038223 @default.
- W3177669185 cites W2091118421 @default.
- W3177669185 cites W2109363714 @default.
- W3177669185 cites W2113837300 @default.
- W3177669185 cites W2114339651 @default.
- W3177669185 cites W2117864026 @default.
- W3177669185 cites W2123972824 @default.
- W3177669185 cites W2156976422 @default.
- W3177669185 cites W2158469273 @default.
- W3177669185 cites W2257979135 @default.
- W3177669185 cites W2294340956 @default.
- W3177669185 cites W2342408547 @default.
- W3177669185 cites W2344173564 @default.
- W3177669185 cites W2590787195 @default.
- W3177669185 cites W2606358673 @default.
- W3177669185 cites W2767129667 @default.
- W3177669185 cites W2783033852 @default.
- W3177669185 cites W2783173268 @default.
- W3177669185 cites W2794861414 @default.
- W3177669185 cites W2883531828 @default.
- W3177669185 cites W2892077825 @default.
- W3177669185 cites W2892303285 @default.
- W3177669185 cites W2896442278 @default.
- W3177669185 cites W2899340900 @default.
- W3177669185 cites W2903523957 @default.
- W3177669185 cites W2907657411 @default.
- W3177669185 cites W2908643158 @default.
- W3177669185 cites W2933127114 @default.
- W3177669185 cites W2951270751 @default.
- W3177669185 cites W2964061570 @default.
- W3177669185 cites W2964378634 @default.
- W3177669185 cites W2971648973 @default.
- W3177669185 cites W2973862992 @default.
- W3177669185 cites W2990464212 @default.
- W3177669185 cites W2997357271 @default.
- W3177669185 cites W2998116579 @default.
- W3177669185 cites W2999656808 @default.
- W3177669185 cites W3006868073 @default.
- W3177669185 cites W3008243670 @default.
- W3177669185 cites W3008309395 @default.
- W3177669185 cites W3041133507 @default.
- W3177669185 cites W3072315125 @default.
- W3177669185 cites W3081103181 @default.
- W3177669185 cites W3086519949 @default.
- W3177669185 cites W3100366369 @default.
- W3177669185 cites W3101076092 @default.
- W3177669185 cites W3133928393 @default.
- W3177669185 cites W3138731711 @default.
- W3177669185 cites W3144128102 @default.
- W3177669185 cites W3158248996 @default.
- W3177669185 cites W3199710769 @default.
- W3177669185 cites W3207121925 @default.
- W3177669185 cites W4206547457 @default.
- W3177669185 cites W4211232706 @default.
- W3177669185 cites W4230557988 @default.
- W3177669185 cites W4288939032 @default.
- W3177669185 doi "https://doi.org/10.1016/j.arcontrol.2022.01.001" @default.
- W3177669185 hasPublicationYear "2022" @default.
- W3177669185 type Work @default.
- W3177669185 sameAs 3177669185 @default.
- W3177669185 citedByCount "21" @default.
- W3177669185 countsByYear W31776691852021 @default.
- W3177669185 countsByYear W31776691852022 @default.
- W3177669185 countsByYear W31776691852023 @default.
- W3177669185 crossrefType "journal-article" @default.
- W3177669185 hasAuthorship W3177669185A5060454132 @default.
- W3177669185 hasAuthorship W3177669185A5081500464 @default.
- W3177669185 hasAuthorship W3177669185A5089244984 @default.
- W3177669185 hasBestOaLocation W31776691851 @default.
- W3177669185 hasConcept C111919701 @default.
- W3177669185 hasConcept C121332964 @default.
- W3177669185 hasConcept C154945302 @default.
- W3177669185 hasConcept C15744967 @default.
- W3177669185 hasConcept C201307755 @default.
- W3177669185 hasConcept C2779267917 @default.
- W3177669185 hasConcept C2779585090 @default.
- W3177669185 hasConcept C29852176 @default.
- W3177669185 hasConcept C35525427 @default.
- W3177669185 hasConcept C38652104 @default.
- W3177669185 hasConcept C41008148 @default.