Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177771772> ?p ?o ?g. }
- W3177771772 endingPage "53" @default.
- W3177771772 startingPage "40" @default.
- W3177771772 abstract "The issue of pollution in urban cities is a major problem these days especially in cities like the New Delhi is detected with more number of toxic gases in air, which has deduced the air quality of New Delhi. Thus, predictive analytics play a significant role in predicting the future instances of air quality based on the historical data. Forecasting the air quality of these cities is mandatory to overcome its consequences. Several machines learning algorithm is widely used these days to predict the future instances. Such as Random Forest, support vector machine, regression, classification, and so on. Main pollutants which present in the air are PM2.5, PM10, CO, NO2, SO2 and O3. In this paper we have focused mainly on Data set of New Delhi for predicting ambient air pollution and quality using several machine learning algorithm." @default.
- W3177771772 created "2021-07-19" @default.
- W3177771772 creator A5000019246 @default.
- W3177771772 creator A5047358269 @default.
- W3177771772 date "2021-06-01" @default.
- W3177771772 modified "2023-09-23" @default.
- W3177771772 title "Dynamic Forecasting Of Air Pollution In Delhi Zone Using Machine Learning Algorithm" @default.
- W3177771772 cites W1892690582 @default.
- W3177771772 cites W1988790447 @default.
- W3177771772 cites W1991954766 @default.
- W3177771772 cites W2009598717 @default.
- W3177771772 cites W2041092292 @default.
- W3177771772 cites W2056132907 @default.
- W3177771772 cites W2064587207 @default.
- W3177771772 cites W2065356536 @default.
- W3177771772 cites W2070491377 @default.
- W3177771772 cites W2076485554 @default.
- W3177771772 cites W2091214913 @default.
- W3177771772 cites W2118634354 @default.
- W3177771772 cites W2145862305 @default.
- W3177771772 cites W2179702458 @default.
- W3177771772 cites W2282992258 @default.
- W3177771772 cites W2292093829 @default.
- W3177771772 cites W2296223440 @default.
- W3177771772 cites W2460954196 @default.
- W3177771772 cites W2565536624 @default.
- W3177771772 cites W2571646445 @default.
- W3177771772 cites W2574824822 @default.
- W3177771772 cites W2578202367 @default.
- W3177771772 cites W2604927196 @default.
- W3177771772 cites W2623406985 @default.
- W3177771772 cites W2626098613 @default.
- W3177771772 cites W2783469397 @default.
- W3177771772 cites W2783746124 @default.
- W3177771772 cites W2793139798 @default.
- W3177771772 cites W2798058877 @default.
- W3177771772 cites W2807035805 @default.
- W3177771772 cites W2908829962 @default.
- W3177771772 cites W2911964244 @default.
- W3177771772 cites W2912934387 @default.
- W3177771772 cites W2915204499 @default.
- W3177771772 cites W2930564639 @default.
- W3177771772 cites W2954482899 @default.
- W3177771772 cites W2968862935 @default.
- W3177771772 cites W2979950223 @default.
- W3177771772 cites W3000006707 @default.
- W3177771772 cites W3028189778 @default.
- W3177771772 cites W3038583522 @default.
- W3177771772 cites W3039898056 @default.
- W3177771772 cites W3057364895 @default.
- W3177771772 cites W3085162807 @default.
- W3177771772 cites W3102476541 @default.
- W3177771772 hasPublicationYear "2021" @default.
- W3177771772 type Work @default.
- W3177771772 sameAs 3177771772 @default.
- W3177771772 citedByCount "0" @default.
- W3177771772 crossrefType "journal-article" @default.
- W3177771772 hasAuthorship W3177771772A5000019246 @default.
- W3177771772 hasAuthorship W3177771772A5047358269 @default.
- W3177771772 hasConcept C11413529 @default.
- W3177771772 hasConcept C119857082 @default.
- W3177771772 hasConcept C12267149 @default.
- W3177771772 hasConcept C124101348 @default.
- W3177771772 hasConcept C126314574 @default.
- W3177771772 hasConcept C153294291 @default.
- W3177771772 hasConcept C154945302 @default.
- W3177771772 hasConcept C158739034 @default.
- W3177771772 hasConcept C166957645 @default.
- W3177771772 hasConcept C169258074 @default.
- W3177771772 hasConcept C178790620 @default.
- W3177771772 hasConcept C185592680 @default.
- W3177771772 hasConcept C18903297 @default.
- W3177771772 hasConcept C205649164 @default.
- W3177771772 hasConcept C2987853052 @default.
- W3177771772 hasConcept C3020456351 @default.
- W3177771772 hasConcept C41008148 @default.
- W3177771772 hasConcept C521259446 @default.
- W3177771772 hasConcept C559116025 @default.
- W3177771772 hasConcept C79158427 @default.
- W3177771772 hasConcept C86803240 @default.
- W3177771772 hasConceptScore W3177771772C11413529 @default.
- W3177771772 hasConceptScore W3177771772C119857082 @default.
- W3177771772 hasConceptScore W3177771772C12267149 @default.
- W3177771772 hasConceptScore W3177771772C124101348 @default.
- W3177771772 hasConceptScore W3177771772C126314574 @default.
- W3177771772 hasConceptScore W3177771772C153294291 @default.
- W3177771772 hasConceptScore W3177771772C154945302 @default.
- W3177771772 hasConceptScore W3177771772C158739034 @default.
- W3177771772 hasConceptScore W3177771772C166957645 @default.
- W3177771772 hasConceptScore W3177771772C169258074 @default.
- W3177771772 hasConceptScore W3177771772C178790620 @default.
- W3177771772 hasConceptScore W3177771772C185592680 @default.
- W3177771772 hasConceptScore W3177771772C18903297 @default.
- W3177771772 hasConceptScore W3177771772C205649164 @default.
- W3177771772 hasConceptScore W3177771772C2987853052 @default.
- W3177771772 hasConceptScore W3177771772C3020456351 @default.
- W3177771772 hasConceptScore W3177771772C41008148 @default.
- W3177771772 hasConceptScore W3177771772C521259446 @default.