Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177788761> ?p ?o ?g. }
- W3177788761 endingPage "336" @default.
- W3177788761 startingPage "311" @default.
- W3177788761 abstract "Abstract Offline evaluation of recommender systems (RSs) mostly relies on historical data, which is often biased. The bias is a result of many confounders that affect the data collection process. In such biased data, user-item interactions are Missing Not At Random (MNAR). Measures of recommender system performance on MNAR test data are unlikely to be reliable indicators of real-world performance unless something is done to mitigate the bias. One widespread way that researchers try to obtain less biased offline evaluation is by designing new, supposedly unbiased performance metrics for use on MNAR test data. We investigate an alternative solution, a sampling approach . The general idea is to use a sampling strategy on MNAR data to generate an intervened test set with less bias — one in which interactions are Missing At Random (MAR) or, at least, one that is more MAR-like. An existing example of this approach is SKEW, a sampling strategy that aims to adjust for the confounding effect that an item’s popularity has on its likelihood of being observed. In this paper, after extensively surveying the literature on the bias problem in the offline evaluation of RSs, we propose and formulate a novel sampling approach, which we call WTD; we also propose a more practical variant, which we call WTD_H. We compare our methods to SKEW and to two baselines which perform a random intervention on MNAR data. We empirically validate for the first time the effectiveness of SKEW and we show our approach to be a better estimator of the performance that one would obtain on (unbiased) MAR test data. Our strategy benefits from high generality (e.g. it can also be employed for training a recommender) and low overheads (e.g. it does not require any learning)." @default.
- W3177788761 created "2021-07-19" @default.
- W3177788761 creator A5008002610 @default.
- W3177788761 creator A5080871547 @default.
- W3177788761 date "2021-07-10" @default.
- W3177788761 modified "2023-09-27" @default.
- W3177788761 title "A sampling approach to Debiasing the offline evaluation of recommender systems" @default.
- W3177788761 cites W1853837125 @default.
- W3177788761 cites W1886704267 @default.
- W3177788761 cites W1992665562 @default.
- W3177788761 cites W2005415325 @default.
- W3177788761 cites W2024256767 @default.
- W3177788761 cites W2026773017 @default.
- W3177788761 cites W2045745608 @default.
- W3177788761 cites W2046974451 @default.
- W3177788761 cites W2054141820 @default.
- W3177788761 cites W2063468305 @default.
- W3177788761 cites W2080320419 @default.
- W3177788761 cites W2150886314 @default.
- W3177788761 cites W2171557311 @default.
- W3177788761 cites W2498260651 @default.
- W3177788761 cites W2739587313 @default.
- W3177788761 cites W2740253077 @default.
- W3177788761 cites W2748058847 @default.
- W3177788761 cites W2765564115 @default.
- W3177788761 cites W2798972759 @default.
- W3177788761 cites W2799048248 @default.
- W3177788761 cites W2892888989 @default.
- W3177788761 cites W2893840686 @default.
- W3177788761 cites W2972905192 @default.
- W3177788761 cites W3015088447 @default.
- W3177788761 cites W3081170586 @default.
- W3177788761 cites W3088936686 @default.
- W3177788761 cites W3103310105 @default.
- W3177788761 cites W3150893739 @default.
- W3177788761 doi "https://doi.org/10.1007/s10844-021-00651-y" @default.
- W3177788761 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35493700" @default.
- W3177788761 hasPublicationYear "2021" @default.
- W3177788761 type Work @default.
- W3177788761 sameAs 3177788761 @default.
- W3177788761 citedByCount "2" @default.
- W3177788761 countsByYear W31777887612023 @default.
- W3177788761 crossrefType "journal-article" @default.
- W3177788761 hasAuthorship W3177788761A5008002610 @default.
- W3177788761 hasAuthorship W3177788761A5080871547 @default.
- W3177788761 hasBestOaLocation W31777887611 @default.
- W3177788761 hasConcept C105795698 @default.
- W3177788761 hasConcept C106131492 @default.
- W3177788761 hasConcept C119857082 @default.
- W3177788761 hasConcept C124101348 @default.
- W3177788761 hasConcept C129848803 @default.
- W3177788761 hasConcept C136764020 @default.
- W3177788761 hasConcept C140779682 @default.
- W3177788761 hasConcept C15744967 @default.
- W3177788761 hasConcept C177264268 @default.
- W3177788761 hasConcept C185429906 @default.
- W3177788761 hasConcept C185592680 @default.
- W3177788761 hasConcept C188147891 @default.
- W3177788761 hasConcept C198531522 @default.
- W3177788761 hasConcept C199360897 @default.
- W3177788761 hasConcept C2385561 @default.
- W3177788761 hasConcept C2779458634 @default.
- W3177788761 hasConcept C2780586970 @default.
- W3177788761 hasConcept C31972630 @default.
- W3177788761 hasConcept C33923547 @default.
- W3177788761 hasConcept C41008148 @default.
- W3177788761 hasConcept C43617362 @default.
- W3177788761 hasConcept C43711488 @default.
- W3177788761 hasConcept C557471498 @default.
- W3177788761 hasConcept C75917345 @default.
- W3177788761 hasConcept C76155785 @default.
- W3177788761 hasConcept C77805123 @default.
- W3177788761 hasConcept C9357733 @default.
- W3177788761 hasConceptScore W3177788761C105795698 @default.
- W3177788761 hasConceptScore W3177788761C106131492 @default.
- W3177788761 hasConceptScore W3177788761C119857082 @default.
- W3177788761 hasConceptScore W3177788761C124101348 @default.
- W3177788761 hasConceptScore W3177788761C129848803 @default.
- W3177788761 hasConceptScore W3177788761C136764020 @default.
- W3177788761 hasConceptScore W3177788761C140779682 @default.
- W3177788761 hasConceptScore W3177788761C15744967 @default.
- W3177788761 hasConceptScore W3177788761C177264268 @default.
- W3177788761 hasConceptScore W3177788761C185429906 @default.
- W3177788761 hasConceptScore W3177788761C185592680 @default.
- W3177788761 hasConceptScore W3177788761C188147891 @default.
- W3177788761 hasConceptScore W3177788761C198531522 @default.
- W3177788761 hasConceptScore W3177788761C199360897 @default.
- W3177788761 hasConceptScore W3177788761C2385561 @default.
- W3177788761 hasConceptScore W3177788761C2779458634 @default.
- W3177788761 hasConceptScore W3177788761C2780586970 @default.
- W3177788761 hasConceptScore W3177788761C31972630 @default.
- W3177788761 hasConceptScore W3177788761C33923547 @default.
- W3177788761 hasConceptScore W3177788761C41008148 @default.
- W3177788761 hasConceptScore W3177788761C43617362 @default.
- W3177788761 hasConceptScore W3177788761C43711488 @default.
- W3177788761 hasConceptScore W3177788761C557471498 @default.
- W3177788761 hasConceptScore W3177788761C75917345 @default.
- W3177788761 hasConceptScore W3177788761C76155785 @default.