Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177796667> ?p ?o ?g. }
- W3177796667 endingPage "155" @default.
- W3177796667 startingPage "138" @default.
- W3177796667 abstract "Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy uses predictive modeling techniques to “mine” variables of interest from available data and then includes those variables into an econometric framework to estimate causal effects. However, because the predictions from machine learning models are inevitably imperfect, econometric analyses based on the predicted variables likely suffer from bias due to measurement error. We propose a novel approach to mitigate these biases, leveraging the random forest technique. We propose using random forest not just for prediction but also for generating instrumental variables for bias correction. The random forest algorithm performs best when comprised of a set of trees that are individually accurate in their predictions, yet which also make “different” mistakes, that is, have weakly correlated prediction errors. A key observation is that these properties are closely related to the relevance and exclusion requirements of valid instrumental variables. We design a data-driven procedure to select tuples of individual trees from a random forest, in which one tree serves as the endogenous covariate and the others serve as its instruments. Simulation experiments demonstrate its efficacy in mitigating estimation biases and its superior performance over alternative methods. History: David Martens served as the senior editor for this article. Data Ethics & Reproducibility Note: The code capsule is available on Code Ocean at https://codeocean.com/capsule/7039927/tree/v1 and in the e-Companion to this article (available at https://doi.org/10.1287/ijds.2022.0019 )." @default.
- W3177796667 created "2021-07-19" @default.
- W3177796667 creator A5008688627 @default.
- W3177796667 creator A5026872292 @default.
- W3177796667 creator A5056123613 @default.
- W3177796667 creator A5057319034 @default.
- W3177796667 date "2022-10-01" @default.
- W3177796667 modified "2023-09-26" @default.
- W3177796667 title "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem" @default.
- W3177796667 cites W1631913072 @default.
- W3177796667 cites W1885924565 @default.
- W3177796667 cites W1974025513 @default.
- W3177796667 cites W1974614303 @default.
- W3177796667 cites W1979286447 @default.
- W3177796667 cites W1981651168 @default.
- W3177796667 cites W1990518057 @default.
- W3177796667 cites W2006398000 @default.
- W3177796667 cites W2011997924 @default.
- W3177796667 cites W2034489756 @default.
- W3177796667 cites W2061250208 @default.
- W3177796667 cites W2064360179 @default.
- W3177796667 cites W2068875390 @default.
- W3177796667 cites W2073195634 @default.
- W3177796667 cites W2080288369 @default.
- W3177796667 cites W2086707534 @default.
- W3177796667 cites W2092349313 @default.
- W3177796667 cites W2095175829 @default.
- W3177796667 cites W2098967410 @default.
- W3177796667 cites W2109437759 @default.
- W3177796667 cites W2112352537 @default.
- W3177796667 cites W2114386340 @default.
- W3177796667 cites W2116854262 @default.
- W3177796667 cites W2129189718 @default.
- W3177796667 cites W2130486630 @default.
- W3177796667 cites W2131275242 @default.
- W3177796667 cites W2132662368 @default.
- W3177796667 cites W2137906974 @default.
- W3177796667 cites W2149353214 @default.
- W3177796667 cites W2153325306 @default.
- W3177796667 cites W2155723942 @default.
- W3177796667 cites W2157635163 @default.
- W3177796667 cites W2162387923 @default.
- W3177796667 cites W2163162137 @default.
- W3177796667 cites W2216946510 @default.
- W3177796667 cites W2305754340 @default.
- W3177796667 cites W2315798686 @default.
- W3177796667 cites W2318460400 @default.
- W3177796667 cites W2541714257 @default.
- W3177796667 cites W2589849966 @default.
- W3177796667 cites W2611751757 @default.
- W3177796667 cites W2911964244 @default.
- W3177796667 cites W2964099165 @default.
- W3177796667 cites W3101622170 @default.
- W3177796667 cites W3121698046 @default.
- W3177796667 cites W3122061189 @default.
- W3177796667 cites W3122125470 @default.
- W3177796667 cites W3123432896 @default.
- W3177796667 cites W3124946654 @default.
- W3177796667 cites W3126027997 @default.
- W3177796667 cites W3126059685 @default.
- W3177796667 cites W4229737049 @default.
- W3177796667 cites W4230765542 @default.
- W3177796667 cites W4232505725 @default.
- W3177796667 cites W4242238911 @default.
- W3177796667 cites W4376453151 @default.
- W3177796667 cites W578092267 @default.
- W3177796667 doi "https://doi.org/10.1287/ijds.2022.0019" @default.
- W3177796667 hasPublicationYear "2022" @default.
- W3177796667 type Work @default.
- W3177796667 sameAs 3177796667 @default.
- W3177796667 citedByCount "0" @default.
- W3177796667 crossrefType "journal-article" @default.
- W3177796667 hasAuthorship W3177796667A5008688627 @default.
- W3177796667 hasAuthorship W3177796667A5026872292 @default.
- W3177796667 hasAuthorship W3177796667A5056123613 @default.
- W3177796667 hasAuthorship W3177796667A5057319034 @default.
- W3177796667 hasBestOaLocation W31777966672 @default.
- W3177796667 hasConcept C105795698 @default.
- W3177796667 hasConcept C113174947 @default.
- W3177796667 hasConcept C119043178 @default.
- W3177796667 hasConcept C119857082 @default.
- W3177796667 hasConcept C124101348 @default.
- W3177796667 hasConcept C134306372 @default.
- W3177796667 hasConcept C149782125 @default.
- W3177796667 hasConcept C154945302 @default.
- W3177796667 hasConcept C158154518 @default.
- W3177796667 hasConcept C158600405 @default.
- W3177796667 hasConcept C162144332 @default.
- W3177796667 hasConcept C169258074 @default.
- W3177796667 hasConcept C177264268 @default.
- W3177796667 hasConcept C17744445 @default.
- W3177796667 hasConcept C179024874 @default.
- W3177796667 hasConcept C199360897 @default.
- W3177796667 hasConcept C199539241 @default.
- W3177796667 hasConcept C26517878 @default.
- W3177796667 hasConcept C2776214188 @default.
- W3177796667 hasConcept C2776760102 @default.
- W3177796667 hasConcept C33923547 @default.