Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177970040> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3177970040 endingPage "189" @default.
- W3177970040 startingPage "176" @default.
- W3177970040 abstract "Many real time series datasets exhibit structural changes over time. A popular model for capturing their temporal dependence is that of vector autoregressions (VAR), which can accommodate structural changes through time evolving transition matrices. The problem then becomes to both estimate the (unknown) number of structural break points, together with the VAR model parameters. An additional challenge emerges in the presence of very large datasets, namely on how to accomplish these two objectives in a computational efficient manner. In this article, we propose a novel procedure which leverages a block segmentation scheme (BSS) that reduces the number of model parameters to be estimated through a regularized least-square criterion. Specifically, BSS examines appropriately defined blocks of the available data, which when combined with a fused lasso-based estimation criterion, leads to significant computational gains without compromising on the statistical accuracy in identifying the number and location of the structural breaks. This procedure is further coupled with new local and exhaustive search steps to consistently estimate the number and relative location of the break points. The procedure is scalable to big high-dimensional time series datasets with a computational complexity that can achieve , where n is the length of the time series (sample size), compared to an exhaustive procedure that requires O(n) steps. Extensive numerical work on synthetic data supports the theoretical findings and illustrates the attractive properties of the procedure. Finally, an application to a neuroscience dataset exhibits its usefulness in applications. Supplementary files for this article are available online." @default.
- W3177970040 created "2021-07-19" @default.
- W3177970040 creator A5002270240 @default.
- W3177970040 creator A5007282531 @default.
- W3177970040 creator A5017220650 @default.
- W3177970040 date "2021-08-02" @default.
- W3177970040 modified "2023-10-14" @default.
- W3177970040 title "Fast and Scalable Algorithm for Detection of Structural Breaks in Big VAR Models" @default.
- W3177970040 cites W1544178588 @default.
- W3177970040 cites W1975684011 @default.
- W3177970040 cites W1998244228 @default.
- W3177970040 cites W2016404801 @default.
- W3177970040 cites W2028436763 @default.
- W3177970040 cites W2062317311 @default.
- W3177970040 cites W2072254976 @default.
- W3177970040 cites W2099210013 @default.
- W3177970040 cites W2100556411 @default.
- W3177970040 cites W2118607090 @default.
- W3177970040 cites W2118673550 @default.
- W3177970040 cites W2140514146 @default.
- W3177970040 cites W2150427470 @default.
- W3177970040 cites W2158998391 @default.
- W3177970040 cites W2186953265 @default.
- W3177970040 cites W2272905256 @default.
- W3177970040 cites W2491391752 @default.
- W3177970040 cites W2565466087 @default.
- W3177970040 cites W2583514401 @default.
- W3177970040 cites W2962736036 @default.
- W3177970040 cites W2972511296 @default.
- W3177970040 cites W3025537884 @default.
- W3177970040 cites W3028794438 @default.
- W3177970040 cites W3030116412 @default.
- W3177970040 cites W3098561233 @default.
- W3177970040 cites W3104644405 @default.
- W3177970040 cites W3105322001 @default.
- W3177970040 cites W3105334025 @default.
- W3177970040 cites W3120580392 @default.
- W3177970040 doi "https://doi.org/10.1080/10618600.2021.1950005" @default.
- W3177970040 hasPublicationYear "2021" @default.
- W3177970040 type Work @default.
- W3177970040 sameAs 3177970040 @default.
- W3177970040 citedByCount "2" @default.
- W3177970040 countsByYear W31779700402023 @default.
- W3177970040 crossrefType "journal-article" @default.
- W3177970040 hasAuthorship W3177970040A5002270240 @default.
- W3177970040 hasAuthorship W3177970040A5007282531 @default.
- W3177970040 hasAuthorship W3177970040A5017220650 @default.
- W3177970040 hasBestOaLocation W31779700402 @default.
- W3177970040 hasConcept C11413529 @default.
- W3177970040 hasConcept C124101348 @default.
- W3177970040 hasConcept C136764020 @default.
- W3177970040 hasConcept C143724316 @default.
- W3177970040 hasConcept C151730666 @default.
- W3177970040 hasConcept C179799912 @default.
- W3177970040 hasConcept C2524010 @default.
- W3177970040 hasConcept C2777210771 @default.
- W3177970040 hasConcept C33923547 @default.
- W3177970040 hasConcept C37616216 @default.
- W3177970040 hasConcept C41008148 @default.
- W3177970040 hasConcept C48044578 @default.
- W3177970040 hasConcept C75684735 @default.
- W3177970040 hasConcept C77088390 @default.
- W3177970040 hasConcept C86803240 @default.
- W3177970040 hasConceptScore W3177970040C11413529 @default.
- W3177970040 hasConceptScore W3177970040C124101348 @default.
- W3177970040 hasConceptScore W3177970040C136764020 @default.
- W3177970040 hasConceptScore W3177970040C143724316 @default.
- W3177970040 hasConceptScore W3177970040C151730666 @default.
- W3177970040 hasConceptScore W3177970040C179799912 @default.
- W3177970040 hasConceptScore W3177970040C2524010 @default.
- W3177970040 hasConceptScore W3177970040C2777210771 @default.
- W3177970040 hasConceptScore W3177970040C33923547 @default.
- W3177970040 hasConceptScore W3177970040C37616216 @default.
- W3177970040 hasConceptScore W3177970040C41008148 @default.
- W3177970040 hasConceptScore W3177970040C48044578 @default.
- W3177970040 hasConceptScore W3177970040C75684735 @default.
- W3177970040 hasConceptScore W3177970040C77088390 @default.
- W3177970040 hasConceptScore W3177970040C86803240 @default.
- W3177970040 hasIssue "1" @default.
- W3177970040 hasLocation W31779700401 @default.
- W3177970040 hasLocation W31779700402 @default.
- W3177970040 hasOpenAccess W3177970040 @default.
- W3177970040 hasPrimaryLocation W31779700401 @default.
- W3177970040 hasRelatedWork W1525643724 @default.
- W3177970040 hasRelatedWork W1980063223 @default.
- W3177970040 hasRelatedWork W1996786749 @default.
- W3177970040 hasRelatedWork W2060665237 @default.
- W3177970040 hasRelatedWork W2076173842 @default.
- W3177970040 hasRelatedWork W2302028273 @default.
- W3177970040 hasRelatedWork W2364921833 @default.
- W3177970040 hasRelatedWork W2380926231 @default.
- W3177970040 hasRelatedWork W3150190294 @default.
- W3177970040 hasRelatedWork W4248694259 @default.
- W3177970040 hasVolume "31" @default.
- W3177970040 isParatext "false" @default.
- W3177970040 isRetracted "false" @default.
- W3177970040 magId "3177970040" @default.
- W3177970040 workType "article" @default.