Matches in SemOpenAlex for { <https://semopenalex.org/work/W3177989452> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3177989452 endingPage "9" @default.
- W3177989452 startingPage "1" @default.
- W3177989452 abstract "To study and explore the adoption value of magnetic resonance imaging (MRI) in the diagnosis of anterior cruciate ligament (ACL) injuries, a multimodal feature fusion model based on deep learning was proposed for MRI diagnosis. After the related performance of the proposed algorithm was evaluated, it was utilized in the diagnosis of knee joint injuries. Thirty patients with knee joint injuries who came to our hospital for treatment were selected, and all patients were diagnosed with MRI based on deep learning multimodal feature fusion model (MRI group) and arthroscopy (arthroscopy group). The results showed that deep learning-based MRI sagittal plane detection had a great advantage and a high accuracy of 96.28% in the prediction task of ACL tearing. The sensitivity, specificity, and accuracy of MRI in the diagnosis of ACL injury was 96.78%, 90.62%, and 92.17%, respectively, and there was no considerable difference in contrast to the results obtained through arthroscopy (P > 0.05). The positive rate of acute ACL patients with bone contusion and medial collateral ligament injury was substantially superior to that of chronic injury. Moreover, the incidence of chronic injury ACL injury with meniscus tear and cartilage injury was notably higher than that of acute injury, with remarkable differences (P < 0.05). In summary, MRI images based on deep learning improved the sensitivity, specificity, and accuracy of ACL injury diagnosis and can accurately determined the type of ACL injury. In addition, it can provide reference information for clinical treatment plan selection and surgery and can be applied and promoted in clinical diagnosis." @default.
- W3177989452 created "2021-07-19" @default.
- W3177989452 creator A5003734781 @default.
- W3177989452 creator A5016880755 @default.
- W3177989452 creator A5018961806 @default.
- W3177989452 creator A5029252675 @default.
- W3177989452 creator A5055517335 @default.
- W3177989452 creator A5079348440 @default.
- W3177989452 creator A5089732894 @default.
- W3177989452 date "2021-07-02" @default.
- W3177989452 modified "2023-10-02" @default.
- W3177989452 title "Deep Learning-Based Magnetic Resonance Imaging Image Features for Diagnosis of Anterior Cruciate Ligament Injury" @default.
- W3177989452 cites W1967678084 @default.
- W3177989452 cites W1993780732 @default.
- W3177989452 cites W2119257979 @default.
- W3177989452 cites W2616621868 @default.
- W3177989452 cites W2765907604 @default.
- W3177989452 cites W2791490876 @default.
- W3177989452 cites W2794083487 @default.
- W3177989452 cites W2809872834 @default.
- W3177989452 cites W2897451575 @default.
- W3177989452 cites W2913700070 @default.
- W3177989452 cites W2915165049 @default.
- W3177989452 cites W2965672783 @default.
- W3177989452 cites W2982029091 @default.
- W3177989452 cites W2999670363 @default.
- W3177989452 cites W3024950758 @default.
- W3177989452 cites W3045503147 @default.
- W3177989452 cites W3045710029 @default.
- W3177989452 cites W3120091839 @default.
- W3177989452 doi "https://doi.org/10.1155/2021/4076175" @default.
- W3177989452 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8272672" @default.
- W3177989452 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34306588" @default.
- W3177989452 hasPublicationYear "2021" @default.
- W3177989452 type Work @default.
- W3177989452 sameAs 3177989452 @default.
- W3177989452 citedByCount "6" @default.
- W3177989452 countsByYear W31779894522021 @default.
- W3177989452 countsByYear W31779894522022 @default.
- W3177989452 countsByYear W31779894522023 @default.
- W3177989452 crossrefType "journal-article" @default.
- W3177989452 hasAuthorship W3177989452A5003734781 @default.
- W3177989452 hasAuthorship W3177989452A5016880755 @default.
- W3177989452 hasAuthorship W3177989452A5018961806 @default.
- W3177989452 hasAuthorship W3177989452A5029252675 @default.
- W3177989452 hasAuthorship W3177989452A5055517335 @default.
- W3177989452 hasAuthorship W3177989452A5079348440 @default.
- W3177989452 hasAuthorship W3177989452A5089732894 @default.
- W3177989452 hasBestOaLocation W31779894521 @default.
- W3177989452 hasConcept C126838900 @default.
- W3177989452 hasConcept C141071460 @default.
- W3177989452 hasConcept C142724271 @default.
- W3177989452 hasConcept C143409427 @default.
- W3177989452 hasConcept C178910020 @default.
- W3177989452 hasConcept C204787440 @default.
- W3177989452 hasConcept C2776164576 @default.
- W3177989452 hasConcept C2778096516 @default.
- W3177989452 hasConcept C2778434673 @default.
- W3177989452 hasConcept C2779162959 @default.
- W3177989452 hasConcept C2780423099 @default.
- W3177989452 hasConcept C2781170992 @default.
- W3177989452 hasConcept C2908736133 @default.
- W3177989452 hasConcept C71924100 @default.
- W3177989452 hasConceptScore W3177989452C126838900 @default.
- W3177989452 hasConceptScore W3177989452C141071460 @default.
- W3177989452 hasConceptScore W3177989452C142724271 @default.
- W3177989452 hasConceptScore W3177989452C143409427 @default.
- W3177989452 hasConceptScore W3177989452C178910020 @default.
- W3177989452 hasConceptScore W3177989452C204787440 @default.
- W3177989452 hasConceptScore W3177989452C2776164576 @default.
- W3177989452 hasConceptScore W3177989452C2778096516 @default.
- W3177989452 hasConceptScore W3177989452C2778434673 @default.
- W3177989452 hasConceptScore W3177989452C2779162959 @default.
- W3177989452 hasConceptScore W3177989452C2780423099 @default.
- W3177989452 hasConceptScore W3177989452C2781170992 @default.
- W3177989452 hasConceptScore W3177989452C2908736133 @default.
- W3177989452 hasConceptScore W3177989452C71924100 @default.
- W3177989452 hasLocation W31779894521 @default.
- W3177989452 hasLocation W31779894522 @default.
- W3177989452 hasLocation W31779894523 @default.
- W3177989452 hasOpenAccess W3177989452 @default.
- W3177989452 hasPrimaryLocation W31779894521 @default.
- W3177989452 hasRelatedWork W13477644 @default.
- W3177989452 hasRelatedWork W1854880625 @default.
- W3177989452 hasRelatedWork W1988344560 @default.
- W3177989452 hasRelatedWork W2098378311 @default.
- W3177989452 hasRelatedWork W2319728414 @default.
- W3177989452 hasRelatedWork W2512014332 @default.
- W3177989452 hasRelatedWork W2562696500 @default.
- W3177989452 hasRelatedWork W3114797241 @default.
- W3177989452 hasRelatedWork W3122282432 @default.
- W3177989452 hasRelatedWork W4281808800 @default.
- W3177989452 hasVolume "2021" @default.
- W3177989452 isParatext "false" @default.
- W3177989452 isRetracted "false" @default.
- W3177989452 magId "3177989452" @default.
- W3177989452 workType "article" @default.