Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178164174> ?p ?o ?g. }
- W3178164174 abstract "To evaluate the potential of the texture features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) intratumoral subregions to distinguish benign from malignant breast tumors.A total of 299 patients with pathologically verified breast tumors who underwent breast DCE-MRI examination were enrolled in this study, including 124 benign cases and 175 malignant cases. The whole tumor area was semi-automatically segmented on the basis of subtraction images of DCE-MRI in Matlab 2018b. According to the time to peak of the contrast agent, the whole tumor area was partitioned into three subregions: early, moderate, and late. A total of 467 texture features were extracted from the whole tumor area and the three subregions, respectively. Patients were divided into training (n = 209) and validation (n = 90) cohorts by different MRI scanners. The least absolute shrinkage and selection operator (LASSO) method was used to select the optimal feature subset in the training cohort. The Kolmogorov-Smirnov test was first performed on texture features selected by LASSO to test whether the samples followed a normal distribution. Two machine learning methods, decision tree (DT) and support vector machine (SVM), were used to establish classification models with a 10-fold cross-validation method. The performance of the classification models was evaluated with receiver operating characteristic (ROC) curves.In the training cohort, the areas under the ROC curve (AUCs) for the DT_Whole model and SVM_Whole model were 0.744 and 0.806, respectively. In contrast, the AUCs of the DT_Early model (P = 0.004), DT_Late model (P = 0.015), SVM_Early model (P = 0.002), and SVM_Late model (P = 0.002) were significantly higher: 0.863 (95% CI, 0.808-0.906), 0.860 (95% CI, 0.806-0.904), 0.934 (95% CI, 0.891-0.963), and 0.921 (95% CI, 0.876-0.954), respectively. The SVM_Early model and SVM_Late model achieved better performance than the DT_Early model and DT_Late model (P = 0.003, 0.034, 0.008, and 0.026, respectively). In the validation cohort, the AUCs for the DT_Whole model and SVM_Whole model were 0.670 and 0.708, respectively. In comparison, the AUCs of the DT_Early model (P = 0.006), DT_Late model (P = 0.043), SVM_Early model (P = 0.001), and SVM_Late model (P = 0.007) were significantly higher: 0.839 (95% CI, 0.747-0.908), 0.784 (95% CI, 0.601-0.798), 0.890 (95% CI, 0.806-0.946), and 0.865 (95% CI, 0.777-0.928), respectively.The texture features from intratumoral subregions of breast DCE-MRI showed potential in identifying benign and malignant breast tumors." @default.
- W3178164174 created "2021-07-19" @default.
- W3178164174 creator A5018992928 @default.
- W3178164174 creator A5036287047 @default.
- W3178164174 creator A5053325678 @default.
- W3178164174 date "2021-07-08" @default.
- W3178164174 modified "2023-10-16" @default.
- W3178164174 title "Texture Analysis of DCE-MRI Intratumoral Subregions to Identify Benign and Malignant Breast Tumors" @default.
- W3178164174 cites W1601967150 @default.
- W3178164174 cites W1697828511 @default.
- W3178164174 cites W1896365684 @default.
- W3178164174 cites W1964634957 @default.
- W3178164174 cites W1970706614 @default.
- W3178164174 cites W1987370132 @default.
- W3178164174 cites W1993473032 @default.
- W3178164174 cites W2012573772 @default.
- W3178164174 cites W2029960910 @default.
- W3178164174 cites W2055603681 @default.
- W3178164174 cites W2062252910 @default.
- W3178164174 cites W2067256262 @default.
- W3178164174 cites W2079044269 @default.
- W3178164174 cites W2084567764 @default.
- W3178164174 cites W2091299593 @default.
- W3178164174 cites W2103738676 @default.
- W3178164174 cites W2111547563 @default.
- W3178164174 cites W2114160100 @default.
- W3178164174 cites W2128585633 @default.
- W3178164174 cites W2131175634 @default.
- W3178164174 cites W2179550988 @default.
- W3178164174 cites W2224416104 @default.
- W3178164174 cites W2278954418 @default.
- W3178164174 cites W2295468633 @default.
- W3178164174 cites W2524599066 @default.
- W3178164174 cites W2525466408 @default.
- W3178164174 cites W2548436343 @default.
- W3178164174 cites W2556129573 @default.
- W3178164174 cites W2749723775 @default.
- W3178164174 cites W2767630494 @default.
- W3178164174 cites W2772641544 @default.
- W3178164174 cites W2787759290 @default.
- W3178164174 cites W2901867852 @default.
- W3178164174 cites W2910321127 @default.
- W3178164174 cites W2910630672 @default.
- W3178164174 cites W2917810421 @default.
- W3178164174 cites W2926848333 @default.
- W3178164174 cites W2936593883 @default.
- W3178164174 cites W2951851153 @default.
- W3178164174 cites W2953882293 @default.
- W3178164174 cites W2959498949 @default.
- W3178164174 cites W2976034416 @default.
- W3178164174 cites W2979115403 @default.
- W3178164174 cites W2980739981 @default.
- W3178164174 cites W2981618156 @default.
- W3178164174 cites W2985003253 @default.
- W3178164174 cites W2996030281 @default.
- W3178164174 cites W2999417355 @default.
- W3178164174 cites W2999509917 @default.
- W3178164174 cites W3000344043 @default.
- W3178164174 cites W3012289493 @default.
- W3178164174 cites W3020203706 @default.
- W3178164174 cites W3042573328 @default.
- W3178164174 cites W3086302072 @default.
- W3178164174 cites W3096545435 @default.
- W3178164174 cites W3126122061 @default.
- W3178164174 cites W3139038122 @default.
- W3178164174 cites W3157539278 @default.
- W3178164174 cites W783453938 @default.
- W3178164174 doi "https://doi.org/10.3389/fonc.2021.688182" @default.
- W3178164174 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8299951" @default.
- W3178164174 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34307153" @default.
- W3178164174 hasPublicationYear "2021" @default.
- W3178164174 type Work @default.
- W3178164174 sameAs 3178164174 @default.
- W3178164174 citedByCount "4" @default.
- W3178164174 countsByYear W31781641742022 @default.
- W3178164174 countsByYear W31781641742023 @default.
- W3178164174 crossrefType "journal-article" @default.
- W3178164174 hasAuthorship W3178164174A5018992928 @default.
- W3178164174 hasAuthorship W3178164174A5036287047 @default.
- W3178164174 hasAuthorship W3178164174A5053325678 @default.
- W3178164174 hasBestOaLocation W31781641741 @default.
- W3178164174 hasConcept C121608353 @default.
- W3178164174 hasConcept C12267149 @default.
- W3178164174 hasConcept C126322002 @default.
- W3178164174 hasConcept C126838900 @default.
- W3178164174 hasConcept C136764020 @default.
- W3178164174 hasConcept C143409427 @default.
- W3178164174 hasConcept C148483581 @default.
- W3178164174 hasConcept C153180895 @default.
- W3178164174 hasConcept C154945302 @default.
- W3178164174 hasConcept C2776502983 @default.
- W3178164174 hasConcept C2777111374 @default.
- W3178164174 hasConcept C2780472235 @default.
- W3178164174 hasConcept C2989005 @default.
- W3178164174 hasConcept C37616216 @default.
- W3178164174 hasConcept C41008148 @default.
- W3178164174 hasConcept C41727105 @default.
- W3178164174 hasConcept C530470458 @default.
- W3178164174 hasConcept C58471807 @default.
- W3178164174 hasConcept C71924100 @default.