Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178183022> ?p ?o ?g. }
- W3178183022 endingPage "6890" @default.
- W3178183022 startingPage "6866" @default.
- W3178183022 abstract "Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha−1 (average = 68.76 Mg ha−1) with satisfactory accuracy (coefficient of determination (R2) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha−1). We also compared the proposed model’s capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation." @default.
- W3178183022 created "2021-07-19" @default.
- W3178183022 creator A5007363140 @default.
- W3178183022 creator A5012229008 @default.
- W3178183022 creator A5020793898 @default.
- W3178183022 creator A5034435383 @default.
- W3178183022 creator A5035614978 @default.
- W3178183022 creator A5050347338 @default.
- W3178183022 creator A5002864590 @default.
- W3178183022 date "2021-07-08" @default.
- W3178183022 modified "2023-10-03" @default.
- W3178183022 title "Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam" @default.
- W3178183022 cites W1678356000 @default.
- W3178183022 cites W1964217023 @default.
- W3178183022 cites W1975706531 @default.
- W3178183022 cites W2000613913 @default.
- W3178183022 cites W2009009970 @default.
- W3178183022 cites W2013665199 @default.
- W3178183022 cites W2033275656 @default.
- W3178183022 cites W2041197332 @default.
- W3178183022 cites W2056435747 @default.
- W3178183022 cites W2058312673 @default.
- W3178183022 cites W2059022756 @default.
- W3178183022 cites W2063623478 @default.
- W3178183022 cites W2063907334 @default.
- W3178183022 cites W2070493638 @default.
- W3178183022 cites W2071501094 @default.
- W3178183022 cites W2080441468 @default.
- W3178183022 cites W2094677081 @default.
- W3178183022 cites W2111947859 @default.
- W3178183022 cites W2122825721 @default.
- W3178183022 cites W2126699720 @default.
- W3178183022 cites W2152195021 @default.
- W3178183022 cites W2165993842 @default.
- W3178183022 cites W2214058817 @default.
- W3178183022 cites W2290576226 @default.
- W3178183022 cites W2411263686 @default.
- W3178183022 cites W2563118026 @default.
- W3178183022 cites W2598833690 @default.
- W3178183022 cites W2602766315 @default.
- W3178183022 cites W2727623123 @default.
- W3178183022 cites W2754508630 @default.
- W3178183022 cites W2763867874 @default.
- W3178183022 cites W2775614191 @default.
- W3178183022 cites W2783515600 @default.
- W3178183022 cites W2789665835 @default.
- W3178183022 cites W2791933291 @default.
- W3178183022 cites W2792236667 @default.
- W3178183022 cites W2802549285 @default.
- W3178183022 cites W2802570838 @default.
- W3178183022 cites W2804933989 @default.
- W3178183022 cites W2886202032 @default.
- W3178183022 cites W2893324711 @default.
- W3178183022 cites W2899750879 @default.
- W3178183022 cites W2903885536 @default.
- W3178183022 cites W2904490253 @default.
- W3178183022 cites W2905192710 @default.
- W3178183022 cites W2906843186 @default.
- W3178183022 cites W2911964244 @default.
- W3178183022 cites W2913079708 @default.
- W3178183022 cites W2922382416 @default.
- W3178183022 cites W2923714778 @default.
- W3178183022 cites W2952411786 @default.
- W3178183022 cites W2958221227 @default.
- W3178183022 cites W2967896173 @default.
- W3178183022 cites W2970618422 @default.
- W3178183022 cites W2971982243 @default.
- W3178183022 cites W2972646251 @default.
- W3178183022 cites W2972853490 @default.
- W3178183022 cites W2973236632 @default.
- W3178183022 cites W2980571983 @default.
- W3178183022 cites W2998943555 @default.
- W3178183022 cites W3004095039 @default.
- W3178183022 cites W3005385914 @default.
- W3178183022 cites W3007646969 @default.
- W3178183022 cites W3009990201 @default.
- W3178183022 cites W3015083507 @default.
- W3178183022 cites W3015122510 @default.
- W3178183022 cites W3020552235 @default.
- W3178183022 cites W3033872227 @default.
- W3178183022 cites W3043695894 @default.
- W3178183022 cites W3102476541 @default.
- W3178183022 cites W3110245168 @default.
- W3178183022 cites W3130219998 @default.
- W3178183022 cites W3134499048 @default.
- W3178183022 doi "https://doi.org/10.1080/01431161.2021.1945158" @default.
- W3178183022 hasPublicationYear "2021" @default.
- W3178183022 type Work @default.
- W3178183022 sameAs 3178183022 @default.
- W3178183022 citedByCount "11" @default.
- W3178183022 countsByYear W31781830222022 @default.
- W3178183022 countsByYear W31781830222023 @default.
- W3178183022 crossrefType "journal-article" @default.
- W3178183022 hasAuthorship W3178183022A5002864590 @default.
- W3178183022 hasAuthorship W3178183022A5007363140 @default.
- W3178183022 hasAuthorship W3178183022A5012229008 @default.
- W3178183022 hasAuthorship W3178183022A5020793898 @default.
- W3178183022 hasAuthorship W3178183022A5034435383 @default.