Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178212326> ?p ?o ?g. }
- W3178212326 abstract "Function is defined as the ensemble of tasks that enable the product to complete the designed purpose. Functional tools, such as functional modeling, offer decision guidance in the early phase of product design, where explicit design decisions are yet to be made. Function-based design data is often sparse and grounded in individual interpretation. As such, function-based design tools can benefit from automatic function classification to increase data fidelity and provide function representation models that enable function-based intelligent design agents. Function-based design data is commonly stored in manually generated design repositories. These design repositories are a collection of expert knowledge and interpretations of function in product design bounded by function-flow and component taxonomies. In this work, we represent a structured taxonomy-based design repository as assembly-flow graphs, then leverage a graph neural network (GNN) model to perform automatic function classification. We support automated function classification by learning from repository data to establish the ground truth of component function assignment. Experimental results show that our GNN model achieves a micro-average F${_1}$-score of 0.832 for tier 1 (broad), 0.756 for tier 2, and 0.783 for tier 3 (specific) functions. Given the imbalance of data features, the results are encouraging. Our efforts in this paper can be a starting point for more sophisticated applications in knowledge-based CAD systems and Design-for-X consideration in function-based design." @default.
- W3178212326 created "2021-07-19" @default.
- W3178212326 creator A5059778984 @default.
- W3178212326 creator A5067938085 @default.
- W3178212326 creator A5072012496 @default.
- W3178212326 creator A5075028545 @default.
- W3178212326 date "2021-07-08" @default.
- W3178212326 modified "2023-09-27" @default.
- W3178212326 title "Classifying Component Function in Product Assemblies with Graph Neural Networks" @default.
- W3178212326 cites W1499977957 @default.
- W3178212326 cites W1533861849 @default.
- W3178212326 cites W1545006538 @default.
- W3178212326 cites W1605209582 @default.
- W3178212326 cites W1983635798 @default.
- W3178212326 cites W1990297476 @default.
- W3178212326 cites W2016089260 @default.
- W3178212326 cites W2019227129 @default.
- W3178212326 cites W2033626294 @default.
- W3178212326 cites W2044356522 @default.
- W3178212326 cites W2052401776 @default.
- W3178212326 cites W2053816573 @default.
- W3178212326 cites W2072965465 @default.
- W3178212326 cites W2095705004 @default.
- W3178212326 cites W2096314112 @default.
- W3178212326 cites W2097702657 @default.
- W3178212326 cites W2103018059 @default.
- W3178212326 cites W2119907556 @default.
- W3178212326 cites W2123356613 @default.
- W3178212326 cites W2130072301 @default.
- W3178212326 cites W2131597913 @default.
- W3178212326 cites W2132022337 @default.
- W3178212326 cites W2155236943 @default.
- W3178212326 cites W2156094678 @default.
- W3178212326 cites W2163598528 @default.
- W3178212326 cites W2244807774 @default.
- W3178212326 cites W2333815456 @default.
- W3178212326 cites W235736351 @default.
- W3178212326 cites W2559909185 @default.
- W3178212326 cites W2589314203 @default.
- W3178212326 cites W2595321735 @default.
- W3178212326 cites W2606780347 @default.
- W3178212326 cites W2624431344 @default.
- W3178212326 cites W2736498808 @default.
- W3178212326 cites W2750402403 @default.
- W3178212326 cites W2759136286 @default.
- W3178212326 cites W2777082202 @default.
- W3178212326 cites W2781975598 @default.
- W3178212326 cites W2899273339 @default.
- W3178212326 cites W2918342466 @default.
- W3178212326 cites W2937412180 @default.
- W3178212326 cites W2943987430 @default.
- W3178212326 cites W2962711740 @default.
- W3178212326 cites W2962767366 @default.
- W3178212326 cites W2962843773 @default.
- W3178212326 cites W2963207497 @default.
- W3178212326 cites W2963263347 @default.
- W3178212326 cites W2963858333 @default.
- W3178212326 cites W2964015378 @default.
- W3178212326 cites W2964113829 @default.
- W3178212326 cites W2964121744 @default.
- W3178212326 cites W2964261896 @default.
- W3178212326 cites W2964621549 @default.
- W3178212326 cites W2965591327 @default.
- W3178212326 cites W2970971581 @default.
- W3178212326 cites W2979023429 @default.
- W3178212326 cites W2985990634 @default.
- W3178212326 cites W2988935242 @default.
- W3178212326 cites W2991307130 @default.
- W3178212326 cites W2991337162 @default.
- W3178212326 cites W3003265726 @default.
- W3178212326 cites W3007913393 @default.
- W3178212326 cites W3011496196 @default.
- W3178212326 cites W3011667710 @default.
- W3178212326 cites W3034378854 @default.
- W3178212326 cites W3034655405 @default.
- W3178212326 cites W3035254258 @default.
- W3178212326 cites W3081963674 @default.
- W3178212326 cites W3092584515 @default.
- W3178212326 cites W3094432812 @default.
- W3178212326 cites W3097100159 @default.
- W3178212326 cites W3097357049 @default.
- W3178212326 cites W3101073376 @default.
- W3178212326 cites W3111281983 @default.
- W3178212326 hasPublicationYear "2021" @default.
- W3178212326 type Work @default.
- W3178212326 sameAs 3178212326 @default.
- W3178212326 citedByCount "0" @default.
- W3178212326 crossrefType "posted-content" @default.
- W3178212326 hasAuthorship W3178212326A5059778984 @default.
- W3178212326 hasAuthorship W3178212326A5067938085 @default.
- W3178212326 hasAuthorship W3178212326A5072012496 @default.
- W3178212326 hasAuthorship W3178212326A5075028545 @default.
- W3178212326 hasConcept C119857082 @default.
- W3178212326 hasConcept C120823896 @default.
- W3178212326 hasConcept C121332964 @default.
- W3178212326 hasConcept C12145135 @default.
- W3178212326 hasConcept C124101348 @default.
- W3178212326 hasConcept C14036430 @default.
- W3178212326 hasConcept C153083717 @default.
- W3178212326 hasConcept C154945302 @default.