Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178261586> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3178261586 endingPage "177" @default.
- W3178261586 startingPage "177" @default.
- W3178261586 abstract "<ns4:p><ns4:bold>Background:</ns4:bold>While clinical medicine has exploded, electronic health records for Natural Language Processing (NLP) analyses, public health, and health policy research have not yet adopted these algorithms. We aimed to dissect the health chapters of the government plans of the 2016 and 2021 Peruvian presidential elections, and to compare different NLP algorithms.</ns4:p><ns4:p><ns4:bold>Methods:</ns4:bold>From the government plans (18 in 2016; 19 in 2021) we extracted each sentence from the health chapters. We used five NLP algorithms to extract keywords and phrases from each plan: Term Frequency–Inverse Document Frequency (TF-IDF), Latent Dirichlet Allocation (LDA), TextRank, Keywords Bidirectional Encoder Representations from Transformers (KeyBERT), and Rapid Automatic Keywords Extraction (Rake).</ns4:p><ns4:p><ns4:bold>Results:</ns4:bold>In 2016 we analysed 630 sentences, whereas in 2021 there were 1,685 sentences. The TF-IDF algorithm showed that in 2016, nine terms appeared with a frequency of 0.10 or greater, while in 2021 43 terms met this criterion. The LDA algorithm defined two groups. The first included terms related to things the population would receive (e.g., ’insurance’), while the second included terms about the health system (e.g., ’capacity’). In 2021, most of the government plans belonged to the second group. The TextRank analysis provided keywords showing that ’universal health coverage’ appeared frequently in 2016, while in 2021 keywords about the COVID-19 pandemic were often found. The KeyBERT algorithm provided keywords based on the context of the text. These keywords identified some underlying characteristics of the political party (e.g., political spectrum such as left-wing). The Rake algorithm delivered phrases, in which we found ’universal health coverage’ in 2016 and 2021.</ns4:p><ns4:p><ns4:bold>Conclusion:</ns4:bold>The NLP analysis could be used to inform on the underlying priorities in each government plan. NLP analysis could also be included in research of health policies and politics during general elections and provide informative summaries for the general population.</ns4:p>" @default.
- W3178261586 created "2021-07-19" @default.
- W3178261586 creator A5014512531 @default.
- W3178261586 creator A5027610502 @default.
- W3178261586 creator A5048514648 @default.
- W3178261586 date "2021-07-08" @default.
- W3178261586 modified "2023-10-02" @default.
- W3178261586 title "Government plans in the 2016 and 2021 Peruvian presidential elections: A natural language processing analysis of the health chapters" @default.
- W3178261586 cites W2024932032 @default.
- W3178261586 cites W2133286915 @default.
- W3178261586 cites W2338526423 @default.
- W3178261586 cites W2912971066 @default.
- W3178261586 cites W2917157846 @default.
- W3178261586 cites W2965276171 @default.
- W3178261586 cites W2966351171 @default.
- W3178261586 cites W2970771982 @default.
- W3178261586 cites W2973226110 @default.
- W3178261586 cites W3015425135 @default.
- W3178261586 cites W3090291244 @default.
- W3178261586 cites W3092849554 @default.
- W3178261586 cites W3093404842 @default.
- W3178261586 cites W3093419084 @default.
- W3178261586 cites W3103842844 @default.
- W3178261586 cites W4210984920 @default.
- W3178261586 cites W4232159537 @default.
- W3178261586 doi "https://doi.org/10.12688/wellcomeopenres.16867.1" @default.
- W3178261586 hasPublicationYear "2021" @default.
- W3178261586 type Work @default.
- W3178261586 sameAs 3178261586 @default.
- W3178261586 citedByCount "0" @default.
- W3178261586 crossrefType "journal-article" @default.
- W3178261586 hasAuthorship W3178261586A5014512531 @default.
- W3178261586 hasAuthorship W3178261586A5027610502 @default.
- W3178261586 hasAuthorship W3178261586A5048514648 @default.
- W3178261586 hasBestOaLocation W31782615861 @default.
- W3178261586 hasConcept C11413529 @default.
- W3178261586 hasConcept C138885662 @default.
- W3178261586 hasConcept C144024400 @default.
- W3178261586 hasConcept C149923435 @default.
- W3178261586 hasConcept C154945302 @default.
- W3178261586 hasConcept C17744445 @default.
- W3178261586 hasConcept C197487636 @default.
- W3178261586 hasConcept C199539241 @default.
- W3178261586 hasConcept C204321447 @default.
- W3178261586 hasConcept C2778137410 @default.
- W3178261586 hasConcept C2908647359 @default.
- W3178261586 hasConcept C41008148 @default.
- W3178261586 hasConcept C41895202 @default.
- W3178261586 hasConcept C94625758 @default.
- W3178261586 hasConceptScore W3178261586C11413529 @default.
- W3178261586 hasConceptScore W3178261586C138885662 @default.
- W3178261586 hasConceptScore W3178261586C144024400 @default.
- W3178261586 hasConceptScore W3178261586C149923435 @default.
- W3178261586 hasConceptScore W3178261586C154945302 @default.
- W3178261586 hasConceptScore W3178261586C17744445 @default.
- W3178261586 hasConceptScore W3178261586C197487636 @default.
- W3178261586 hasConceptScore W3178261586C199539241 @default.
- W3178261586 hasConceptScore W3178261586C204321447 @default.
- W3178261586 hasConceptScore W3178261586C2778137410 @default.
- W3178261586 hasConceptScore W3178261586C2908647359 @default.
- W3178261586 hasConceptScore W3178261586C41008148 @default.
- W3178261586 hasConceptScore W3178261586C41895202 @default.
- W3178261586 hasConceptScore W3178261586C94625758 @default.
- W3178261586 hasLocation W31782615861 @default.
- W3178261586 hasOpenAccess W3178261586 @default.
- W3178261586 hasPrimaryLocation W31782615861 @default.
- W3178261586 hasRelatedWork W1552159754 @default.
- W3178261586 hasRelatedWork W2148757832 @default.
- W3178261586 hasRelatedWork W2368651715 @default.
- W3178261586 hasRelatedWork W2611614995 @default.
- W3178261586 hasRelatedWork W2748952813 @default.
- W3178261586 hasRelatedWork W2789919619 @default.
- W3178261586 hasRelatedWork W2899084033 @default.
- W3178261586 hasRelatedWork W3107474891 @default.
- W3178261586 hasRelatedWork W4300089816 @default.
- W3178261586 hasRelatedWork W4321496520 @default.
- W3178261586 hasVolume "6" @default.
- W3178261586 isParatext "false" @default.
- W3178261586 isRetracted "false" @default.
- W3178261586 magId "3178261586" @default.
- W3178261586 workType "article" @default.