Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178275447> ?p ?o ?g. }
- W3178275447 endingPage "10019" @default.
- W3178275447 startingPage "10005" @default.
- W3178275447 abstract "This paper investigates the problem of providing ultra-reliable and power-efficient virtual reality (VR) experiences for wireless mobile users. To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users and enhance their immersive visual experiences, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited. Owing to user movement and time-varying wireless channels, the wireless VR experience enhancement problem is formulated as a sequence-dependent and mixed-integer problem with a goal of maximizing users’ feeling of presence (FoP) in the virtual world, subject to power consumption constraints on access points (APs) and users’ head-mounted displays (HMDs). The problem, however, is hard to be directly solved due to the lack of users’ accurate tracking information and the sequence-dependent and mixed-integer characteristics. To overcome this challenge, we develop a parallel echo state network (ESN) learning method to predict users’ tracking information by training fresh and historical tracking samples separately collected by APs. With the learnt results, we propose a deep reinforcement learning (DRL) based optimization algorithm to solve the formulated problem. In this algorithm, we implement deep neural networks (DNNs) as a scalable solution to produce integer decision variables and solve a continuous power control problem to criticize the integer decision variables. Finally, the performance of the proposed algorithm is compared with various benchmark algorithms, and the impact of different design parameters is also discussed. Simulation results demonstrate that the proposed algorithm is more 4.14% power-efficient than the benchmark algorithms." @default.
- W3178275447 created "2021-07-19" @default.
- W3178275447 creator A5006142477 @default.
- W3178275447 creator A5030858163 @default.
- W3178275447 creator A5041756619 @default.
- W3178275447 creator A5068024444 @default.
- W3178275447 creator A5070350910 @default.
- W3178275447 date "2022-11-01" @default.
- W3178275447 modified "2023-10-16" @default.
- W3178275447 title "Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets Deep Reinforcement Learning" @default.
- W3178275447 cites W1544900599 @default.
- W3178275447 cites W1986570368 @default.
- W3178275447 cites W1996215314 @default.
- W3178275447 cites W2101130703 @default.
- W3178275447 cites W2132468430 @default.
- W3178275447 cites W2469524028 @default.
- W3178275447 cites W2528788999 @default.
- W3178275447 cites W2611421367 @default.
- W3178275447 cites W2743147997 @default.
- W3178275447 cites W2744738758 @default.
- W3178275447 cites W2748924722 @default.
- W3178275447 cites W2755405751 @default.
- W3178275447 cites W2766324256 @default.
- W3178275447 cites W2887223659 @default.
- W3178275447 cites W2893022663 @default.
- W3178275447 cites W2896737602 @default.
- W3178275447 cites W2901851646 @default.
- W3178275447 cites W2914795900 @default.
- W3178275447 cites W2939432951 @default.
- W3178275447 cites W2940859338 @default.
- W3178275447 cites W2943308446 @default.
- W3178275447 cites W2945507395 @default.
- W3178275447 cites W2964349809 @default.
- W3178275447 cites W2975156709 @default.
- W3178275447 cites W2975296300 @default.
- W3178275447 cites W2979447669 @default.
- W3178275447 cites W2989857405 @default.
- W3178275447 cites W3017189976 @default.
- W3178275447 cites W3020902315 @default.
- W3178275447 cites W3021415129 @default.
- W3178275447 cites W3034750691 @default.
- W3178275447 cites W3044679559 @default.
- W3178275447 cites W3098522638 @default.
- W3178275447 cites W3100394039 @default.
- W3178275447 cites W3102752019 @default.
- W3178275447 cites W3118516867 @default.
- W3178275447 cites W3124943657 @default.
- W3178275447 cites W3138954746 @default.
- W3178275447 cites W3140195750 @default.
- W3178275447 cites W3163329819 @default.
- W3178275447 cites W3182194057 @default.
- W3178275447 cites W3192652486 @default.
- W3178275447 cites W3211091494 @default.
- W3178275447 doi "https://doi.org/10.1109/twc.2022.3181674" @default.
- W3178275447 hasPublicationYear "2022" @default.
- W3178275447 type Work @default.
- W3178275447 sameAs 3178275447 @default.
- W3178275447 citedByCount "3" @default.
- W3178275447 countsByYear W31782754472023 @default.
- W3178275447 crossrefType "journal-article" @default.
- W3178275447 hasAuthorship W3178275447A5006142477 @default.
- W3178275447 hasAuthorship W3178275447A5030858163 @default.
- W3178275447 hasAuthorship W3178275447A5041756619 @default.
- W3178275447 hasAuthorship W3178275447A5068024444 @default.
- W3178275447 hasAuthorship W3178275447A5070350910 @default.
- W3178275447 hasBestOaLocation W31782754472 @default.
- W3178275447 hasConcept C108037233 @default.
- W3178275447 hasConcept C108583219 @default.
- W3178275447 hasConcept C11413529 @default.
- W3178275447 hasConcept C119857082 @default.
- W3178275447 hasConcept C13280743 @default.
- W3178275447 hasConcept C154945302 @default.
- W3178275447 hasConcept C185798385 @default.
- W3178275447 hasConcept C194969405 @default.
- W3178275447 hasConcept C205649164 @default.
- W3178275447 hasConcept C41008148 @default.
- W3178275447 hasConcept C48044578 @default.
- W3178275447 hasConcept C555944384 @default.
- W3178275447 hasConcept C76155785 @default.
- W3178275447 hasConcept C77088390 @default.
- W3178275447 hasConcept C79403827 @default.
- W3178275447 hasConcept C97541855 @default.
- W3178275447 hasConceptScore W3178275447C108037233 @default.
- W3178275447 hasConceptScore W3178275447C108583219 @default.
- W3178275447 hasConceptScore W3178275447C11413529 @default.
- W3178275447 hasConceptScore W3178275447C119857082 @default.
- W3178275447 hasConceptScore W3178275447C13280743 @default.
- W3178275447 hasConceptScore W3178275447C154945302 @default.
- W3178275447 hasConceptScore W3178275447C185798385 @default.
- W3178275447 hasConceptScore W3178275447C194969405 @default.
- W3178275447 hasConceptScore W3178275447C205649164 @default.
- W3178275447 hasConceptScore W3178275447C41008148 @default.
- W3178275447 hasConceptScore W3178275447C48044578 @default.
- W3178275447 hasConceptScore W3178275447C555944384 @default.
- W3178275447 hasConceptScore W3178275447C76155785 @default.
- W3178275447 hasConceptScore W3178275447C77088390 @default.
- W3178275447 hasConceptScore W3178275447C79403827 @default.
- W3178275447 hasConceptScore W3178275447C97541855 @default.