Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178291191> ?p ?o ?g. }
- W3178291191 endingPage "2606" @default.
- W3178291191 startingPage "2591" @default.
- W3178291191 abstract "Most real-world networks are time-varying, and many are subject to the stochastic functioning of their nodes and edges. Examples can be seen in the human brain undergoing an epileptic seizure, spontaneous infection and recovery in epidemics, and intermittent functioning of devices in the Internet of Things. Moreover, such networks are becoming increasingly large due to rapid technological advances. However, little has been done to study time-varying, large-scale, stochastic networks (SNs) from a reliability engineering perspective. Toward this goal, this article develops a fault-tolerance model for a type of time-varying network in which nodes (and/or edges) stochastically switch between active and inactive states. It considers fault tolerance from a global connectivity point of view, which has applications in many natural and engineered networks. Specifically, this article presents a Markov chain framework that models the dynamic behavior of nodes and allows for the computation of quantitative measures, including availability and time-to-failure metrics. To accommodate large-scale networks and emphasize global connectivity, this framework utilizes percolation theory, which has recently been of interest in the reliability engineering discipline, to characterize network failure. This article makes several contributions: it proposes a Markov chain framework for computing fault-tolerance metrics that is tractable for large-scale networks, it shows the existence of a phase transition in network availability of a time-varying SN, and it accounts for finite-size effects of percolation in the fault-tolerance model. The proposed methodology is applied to Erdös–Rényi random graphs and a real, large-scale power grid. Experimental results provide insights into network design, maintenance, and failure prevention of time-varying SNs. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This work develops a fault-tolerance model for time-varying stochastic networks in which nodes (and/or edges) randomly switch between active and inactive states. To address increasingly large-scale networks that are being studied, this article appeals to percolation theory. Fault tolerance is, thus, studied from a global connectivity perspective where the existence of a large connected component containing most of the nodes characterizes the functioning of the network. Specifically, this article presents a continuous-time Markov chain (CTMC) framework that models node dynamics and allows for the computation of fault-tolerance metrics, including network availability and mean time to failure. The proposed framework computes metrics efficiently for large networks and allows for studying their asymptotics. The percolation threshold describing the dissolution of the large connected component is used as the failure criterion in the CTMC. The practitioner should note that several assumptions are made in the proposed CTMC framework: nodes possess identical and time-invariant failure and recovery rates, node failure and recovery times are exponentially distributed, and node dynamics are independent of one another. In addition, fault-tolerance metrics computed for finite networks are estimators of the true metric values. The proposed framework is advantageous for quantifying the fault tolerance of large-scale, time-varying networks where the combinatorial explosion and a changing network topology pose challenges to the use of traditional reliability methods. A case study of a power grid network shows how to apply the proposed methodology to real networks." @default.
- W3178291191 created "2021-07-19" @default.
- W3178291191 creator A5043134485 @default.
- W3178291191 creator A5062699999 @default.
- W3178291191 date "2022-07-01" @default.
- W3178291191 modified "2023-10-15" @default.
- W3178291191 title "Markov Chains for Fault-Tolerance Modeling of Stochastic Networks" @default.
- W3178291191 cites W1588489296 @default.
- W3178291191 cites W1838562301 @default.
- W3178291191 cites W1969723574 @default.
- W3178291191 cites W1970736635 @default.
- W3178291191 cites W1976464463 @default.
- W3178291191 cites W1986556763 @default.
- W3178291191 cites W1988334478 @default.
- W3178291191 cites W2015859644 @default.
- W3178291191 cites W2022299424 @default.
- W3178291191 cites W2022819543 @default.
- W3178291191 cites W2023064498 @default.
- W3178291191 cites W2023639446 @default.
- W3178291191 cites W2025550035 @default.
- W3178291191 cites W2033467205 @default.
- W3178291191 cites W2044881936 @default.
- W3178291191 cites W2050401089 @default.
- W3178291191 cites W2062626498 @default.
- W3178291191 cites W2069356492 @default.
- W3178291191 cites W2073440580 @default.
- W3178291191 cites W2079897489 @default.
- W3178291191 cites W2088521668 @default.
- W3178291191 cites W2106275454 @default.
- W3178291191 cites W2110820763 @default.
- W3178291191 cites W2112090702 @default.
- W3178291191 cites W2112472653 @default.
- W3178291191 cites W2113146118 @default.
- W3178291191 cites W2135356058 @default.
- W3178291191 cites W2139743733 @default.
- W3178291191 cites W2145873277 @default.
- W3178291191 cites W2147457379 @default.
- W3178291191 cites W2155802655 @default.
- W3178291191 cites W2158650244 @default.
- W3178291191 cites W2158817550 @default.
- W3178291191 cites W2160313295 @default.
- W3178291191 cites W2161575750 @default.
- W3178291191 cites W2165035730 @default.
- W3178291191 cites W2167822639 @default.
- W3178291191 cites W2214579029 @default.
- W3178291191 cites W2283913623 @default.
- W3178291191 cites W2328099494 @default.
- W3178291191 cites W2328831119 @default.
- W3178291191 cites W2416682348 @default.
- W3178291191 cites W2584183900 @default.
- W3178291191 cites W2610447064 @default.
- W3178291191 cites W2749578364 @default.
- W3178291191 cites W2766693687 @default.
- W3178291191 cites W2766729447 @default.
- W3178291191 cites W2800106116 @default.
- W3178291191 cites W2898820452 @default.
- W3178291191 cites W2946628599 @default.
- W3178291191 cites W2951983020 @default.
- W3178291191 cites W2962759144 @default.
- W3178291191 cites W2963652427 @default.
- W3178291191 cites W3012420014 @default.
- W3178291191 cites W3103149358 @default.
- W3178291191 cites W4238452917 @default.
- W3178291191 cites W4245349808 @default.
- W3178291191 cites W605129406 @default.
- W3178291191 doi "https://doi.org/10.1109/tase.2021.3093035" @default.
- W3178291191 hasPublicationYear "2022" @default.
- W3178291191 type Work @default.
- W3178291191 sameAs 3178291191 @default.
- W3178291191 citedByCount "1" @default.
- W3178291191 countsByYear W31782911912023 @default.
- W3178291191 crossrefType "journal-article" @default.
- W3178291191 hasAuthorship W3178291191A5043134485 @default.
- W3178291191 hasAuthorship W3178291191A5062699999 @default.
- W3178291191 hasConcept C119857082 @default.
- W3178291191 hasConcept C120314980 @default.
- W3178291191 hasConcept C121332964 @default.
- W3178291191 hasConcept C163258240 @default.
- W3178291191 hasConcept C169760540 @default.
- W3178291191 hasConcept C2780457167 @default.
- W3178291191 hasConcept C41008148 @default.
- W3178291191 hasConcept C43214815 @default.
- W3178291191 hasConcept C62520636 @default.
- W3178291191 hasConcept C63540848 @default.
- W3178291191 hasConcept C86803240 @default.
- W3178291191 hasConcept C98763669 @default.
- W3178291191 hasConceptScore W3178291191C119857082 @default.
- W3178291191 hasConceptScore W3178291191C120314980 @default.
- W3178291191 hasConceptScore W3178291191C121332964 @default.
- W3178291191 hasConceptScore W3178291191C163258240 @default.
- W3178291191 hasConceptScore W3178291191C169760540 @default.
- W3178291191 hasConceptScore W3178291191C2780457167 @default.
- W3178291191 hasConceptScore W3178291191C41008148 @default.
- W3178291191 hasConceptScore W3178291191C43214815 @default.
- W3178291191 hasConceptScore W3178291191C62520636 @default.
- W3178291191 hasConceptScore W3178291191C63540848 @default.
- W3178291191 hasConceptScore W3178291191C86803240 @default.
- W3178291191 hasConceptScore W3178291191C98763669 @default.