Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178303945> ?p ?o ?g. }
- W3178303945 endingPage "7880" @default.
- W3178303945 startingPage "7869" @default.
- W3178303945 abstract "The information from the components obtained by waveform decomposition is usually used to inverse topography, and classify tree species, etc. Many efforts on waveform decomposition algorithms have been presented, but they lack comparison analysis and evaluation. Thereby, this article compares and analyzes the performance of five waveform decomposition algorithms, which are Gaussian, Adaptive Gaussian, Weibull, Richardson–Lucy (RL), and Gold, under different topographic conditions such as forests, glaciers, lakes, and residential areas. The experimental results reveal that: first, the Gaussian algorithm causes the biggest fitting error at 9.96 mV in the forested area. It is easy to identify multiple dense peaks as single peaks. Second, there are many misjudged, superimposed, and overlapped waveform components separated by the Weibull algorithm. The Adaptive Gaussian is more capable of fitting complex waveforms but has 122 more outliers than the Weibull algorithm does. Third, the Gold and RL algorithms decompose the largest number of waveform components (272.2k and 265.9k) in the forested area; both RL and Gold algorithms can effectively improve the separability of peaks. Fourth, the RL algorithm is only more effective for the area with sparse vegetation than the Gold algorithm does, i.e., the Gold algorithm is capable of processing data with dense vegetation areas at a lowest false component detection rate of 1.3%, 0.9%, 1.1%, and 0.1% in four areas. Finally, the Gaussian and Gold algorithms have much faster decomposition speed at 1000/s and 2000/s than the other three algorithms do. These results are useful for selecting different algorithms under different environments." @default.
- W3178303945 created "2021-07-19" @default.
- W3178303945 creator A5005217202 @default.
- W3178303945 creator A5044900825 @default.
- W3178303945 creator A5047988362 @default.
- W3178303945 creator A5068396932 @default.
- W3178303945 creator A5075826136 @default.
- W3178303945 creator A5082882903 @default.
- W3178303945 creator A5089135070 @default.
- W3178303945 date "2021-01-01" @default.
- W3178303945 modified "2023-10-18" @default.
- W3178303945 title "Comparison Analysis of Five Waveform Decomposition Algorithms for the Airborne LiDAR Echo Signal" @default.
- W3178303945 cites W1580205926 @default.
- W3178303945 cites W1987248196 @default.
- W3178303945 cites W1990077509 @default.
- W3178303945 cites W2015252931 @default.
- W3178303945 cites W2023774131 @default.
- W3178303945 cites W2025486638 @default.
- W3178303945 cites W2037880065 @default.
- W3178303945 cites W2043309319 @default.
- W3178303945 cites W2045615805 @default.
- W3178303945 cites W2052060966 @default.
- W3178303945 cites W2052769487 @default.
- W3178303945 cites W2053579473 @default.
- W3178303945 cites W2062939783 @default.
- W3178303945 cites W2065255726 @default.
- W3178303945 cites W2070335865 @default.
- W3178303945 cites W2082750454 @default.
- W3178303945 cites W2089525768 @default.
- W3178303945 cites W2094605604 @default.
- W3178303945 cites W2100434976 @default.
- W3178303945 cites W2106488983 @default.
- W3178303945 cites W2131408147 @default.
- W3178303945 cites W2138966546 @default.
- W3178303945 cites W2144615653 @default.
- W3178303945 cites W2156776734 @default.
- W3178303945 cites W2158757182 @default.
- W3178303945 cites W2169951244 @default.
- W3178303945 cites W2170608748 @default.
- W3178303945 cites W2194160504 @default.
- W3178303945 cites W2261267345 @default.
- W3178303945 cites W2516407738 @default.
- W3178303945 cites W2611388668 @default.
- W3178303945 cites W2613353824 @default.
- W3178303945 cites W2744900877 @default.
- W3178303945 cites W2746630228 @default.
- W3178303945 cites W2796021728 @default.
- W3178303945 cites W2943277587 @default.
- W3178303945 cites W3005042366 @default.
- W3178303945 cites W3026047236 @default.
- W3178303945 cites W3193027989 @default.
- W3178303945 cites W4247224274 @default.
- W3178303945 doi "https://doi.org/10.1109/jstars.2021.3096197" @default.
- W3178303945 hasPublicationYear "2021" @default.
- W3178303945 type Work @default.
- W3178303945 sameAs 3178303945 @default.
- W3178303945 citedByCount "48" @default.
- W3178303945 countsByYear W31783039452022 @default.
- W3178303945 countsByYear W31783039452023 @default.
- W3178303945 crossrefType "journal-article" @default.
- W3178303945 hasAuthorship W3178303945A5005217202 @default.
- W3178303945 hasAuthorship W3178303945A5044900825 @default.
- W3178303945 hasAuthorship W3178303945A5047988362 @default.
- W3178303945 hasAuthorship W3178303945A5068396932 @default.
- W3178303945 hasAuthorship W3178303945A5075826136 @default.
- W3178303945 hasAuthorship W3178303945A5082882903 @default.
- W3178303945 hasAuthorship W3178303945A5089135070 @default.
- W3178303945 hasBestOaLocation W31783039451 @default.
- W3178303945 hasConcept C105795698 @default.
- W3178303945 hasConcept C11413529 @default.
- W3178303945 hasConcept C121332964 @default.
- W3178303945 hasConcept C127313418 @default.
- W3178303945 hasConcept C154945302 @default.
- W3178303945 hasConcept C163716315 @default.
- W3178303945 hasConcept C173291955 @default.
- W3178303945 hasConcept C197424946 @default.
- W3178303945 hasConcept C33923547 @default.
- W3178303945 hasConcept C41008148 @default.
- W3178303945 hasConcept C554190296 @default.
- W3178303945 hasConcept C62520636 @default.
- W3178303945 hasConcept C62649853 @default.
- W3178303945 hasConcept C76155785 @default.
- W3178303945 hasConcept C79337645 @default.
- W3178303945 hasConceptScore W3178303945C105795698 @default.
- W3178303945 hasConceptScore W3178303945C11413529 @default.
- W3178303945 hasConceptScore W3178303945C121332964 @default.
- W3178303945 hasConceptScore W3178303945C127313418 @default.
- W3178303945 hasConceptScore W3178303945C154945302 @default.
- W3178303945 hasConceptScore W3178303945C163716315 @default.
- W3178303945 hasConceptScore W3178303945C173291955 @default.
- W3178303945 hasConceptScore W3178303945C197424946 @default.
- W3178303945 hasConceptScore W3178303945C33923547 @default.
- W3178303945 hasConceptScore W3178303945C41008148 @default.
- W3178303945 hasConceptScore W3178303945C554190296 @default.
- W3178303945 hasConceptScore W3178303945C62520636 @default.
- W3178303945 hasConceptScore W3178303945C62649853 @default.
- W3178303945 hasConceptScore W3178303945C76155785 @default.
- W3178303945 hasConceptScore W3178303945C79337645 @default.