Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178463417> ?p ?o ?g. }
- W3178463417 abstract "A significant increase in global urban population affects the efficiency of urban transportation systems. Remarkable urban growth rates are observed in developing or newly industrialized countries where researchers, planners, and authorities face scarcity of relevant official data or geo-data. In this study, we explore remote sensing and open geo-data as alternative sources to generate missing data for transportation models in urban planning and research. We propose a multi-modal approach capable of assessing three essential parameters of the urban spatial structure: buildings, land use, and intra-urban population distribution. Therefore, we first create a very high-resolution (VHR) 3D city model for estimating the building floors. Second, we add detailed land-use information retrieved from OpenStreetMap (OSM). Third, we test and evaluate five experiments to estimate population at a single building level. In our experimental set-up for the mega-city of Santiago de Chile, we find that the multi-modal approach allows generating missing data for transportation independently from official data for any area across the globe. Beyond that, we find the high-level 3D city model is the most accurate for determining population on small scales, and thus evaluate that the integration of land use is an inevitable step to obtain fine-scale intra-urban population distribution." @default.
- W3178463417 created "2021-07-19" @default.
- W3178463417 creator A5008273122 @default.
- W3178463417 creator A5009233299 @default.
- W3178463417 creator A5010647855 @default.
- W3178463417 creator A5033795271 @default.
- W3178463417 creator A5046449632 @default.
- W3178463417 creator A5050422212 @default.
- W3178463417 creator A5081837054 @default.
- W3178463417 date "2021-07-05" @default.
- W3178463417 modified "2023-10-18" @default.
- W3178463417 title "Spatial parameters for transportation: A multi-modal approach for modelling the urban spatial structure using deep learning and remote sensing" @default.
- W3178463417 cites W1485881041 @default.
- W3178463417 cites W159030233 @default.
- W3178463417 cites W189220853 @default.
- W3178463417 cites W1981913661 @default.
- W3178463417 cites W1984388182 @default.
- W3178463417 cites W1993789921 @default.
- W3178463417 cites W1995761138 @default.
- W3178463417 cites W1997460171 @default.
- W3178463417 cites W2000962081 @default.
- W3178463417 cites W2004492980 @default.
- W3178463417 cites W2009620709 @default.
- W3178463417 cites W2012994032 @default.
- W3178463417 cites W201447910 @default.
- W3178463417 cites W2017102171 @default.
- W3178463417 cites W2019721081 @default.
- W3178463417 cites W2022295266 @default.
- W3178463417 cites W2027583316 @default.
- W3178463417 cites W2030517367 @default.
- W3178463417 cites W2039530979 @default.
- W3178463417 cites W2043179846 @default.
- W3178463417 cites W2054733829 @default.
- W3178463417 cites W2054928619 @default.
- W3178463417 cites W2056547788 @default.
- W3178463417 cites W2056793105 @default.
- W3178463417 cites W2057442840 @default.
- W3178463417 cites W2061699609 @default.
- W3178463417 cites W2064760008 @default.
- W3178463417 cites W2073936917 @default.
- W3178463417 cites W2077014675 @default.
- W3178463417 cites W2079746862 @default.
- W3178463417 cites W2084079845 @default.
- W3178463417 cites W2108798634 @default.
- W3178463417 cites W2113240083 @default.
- W3178463417 cites W2125446963 @default.
- W3178463417 cites W2140903664 @default.
- W3178463417 cites W2143642522 @default.
- W3178463417 cites W2157163776 @default.
- W3178463417 cites W2159750996 @default.
- W3178463417 cites W2279302892 @default.
- W3178463417 cites W2304486113 @default.
- W3178463417 cites W2405972778 @default.
- W3178463417 cites W2412667021 @default.
- W3178463417 cites W2412983935 @default.
- W3178463417 cites W2415306542 @default.
- W3178463417 cites W2511025384 @default.
- W3178463417 cites W2517393345 @default.
- W3178463417 cites W2522445019 @default.
- W3178463417 cites W2523500206 @default.
- W3178463417 cites W2557169159 @default.
- W3178463417 cites W2563209634 @default.
- W3178463417 cites W2570762839 @default.
- W3178463417 cites W2581572679 @default.
- W3178463417 cites W2609578799 @default.
- W3178463417 cites W2620689612 @default.
- W3178463417 cites W2621218047 @default.
- W3178463417 cites W2621529189 @default.
- W3178463417 cites W2744637967 @default.
- W3178463417 cites W2745627344 @default.
- W3178463417 cites W2756678904 @default.
- W3178463417 cites W2782522152 @default.
- W3178463417 cites W2790886567 @default.
- W3178463417 cites W2884058623 @default.
- W3178463417 cites W2888335774 @default.
- W3178463417 cites W2896464942 @default.
- W3178463417 cites W2902036000 @default.
- W3178463417 cites W2907357929 @default.
- W3178463417 cites W2910964859 @default.
- W3178463417 cites W2915971115 @default.
- W3178463417 cites W2917780602 @default.
- W3178463417 cites W2929569684 @default.
- W3178463417 cites W2940726923 @default.
- W3178463417 cites W2943535454 @default.
- W3178463417 cites W2945909399 @default.
- W3178463417 cites W2951857602 @default.
- W3178463417 cites W2956858487 @default.
- W3178463417 cites W2963587013 @default.
- W3178463417 cites W2965372358 @default.
- W3178463417 cites W2969550392 @default.
- W3178463417 cites W2978292675 @default.
- W3178463417 cites W2983532257 @default.
- W3178463417 cites W3003754411 @default.
- W3178463417 cites W3012375286 @default.
- W3178463417 cites W3020388420 @default.
- W3178463417 cites W3120672661 @default.
- W3178463417 cites W3122134425 @default.
- W3178463417 cites W3122921070 @default.
- W3178463417 cites W74407261 @default.
- W3178463417 doi "https://doi.org/10.5198/jtlu.2021.1855" @default.