Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178473334> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3178473334 endingPage "330" @default.
- W3178473334 startingPage "320" @default.
- W3178473334 abstract "Facial expression recognition (FER) is a crucial task for human emotion analysis and has attracted wide interest in the field of computer vision and affective computing. General convolutional-based FER methods rely on the powerful pattern abstraction of deep models, but they lack the ability to use semantic information behind significant facial areas in physiological anatomy and cognitive neurology. In this work, we propose a novel approach for expression feature learning called Semantic Graph-based Dual-Stream Network (SG-DSN), which designs a graph representation to model key appearance and geometric facial changes as well as their semantic relationships. A dual-stream network (DSN) with stacked graph convolutional attention blocks (GCABs) is introduced to automatically learn discriminative features from the organized graph representation and finally predict expressions. Experiments on three lab-controlled datasets and two in-the-wild datasets demonstrate that the proposed SG-DSN achieves competitive performance compared with several latest methods." @default.
- W3178473334 created "2021-07-19" @default.
- W3178473334 creator A5001167901 @default.
- W3178473334 creator A5015613049 @default.
- W3178473334 creator A5023363049 @default.
- W3178473334 creator A5052689516 @default.
- W3178473334 date "2021-10-01" @default.
- W3178473334 modified "2023-09-24" @default.
- W3178473334 title "SG-DSN: A Semantic Graph-based Dual-Stream Network for facial expression recognition" @default.
- W3178473334 cites W1661563386 @default.
- W3178473334 cites W2035372623 @default.
- W3178473334 cites W2053075060 @default.
- W3178473334 cites W2145947564 @default.
- W3178473334 cites W2558680118 @default.
- W3178473334 cites W2594083602 @default.
- W3178473334 cites W2600389231 @default.
- W3178473334 cites W2606933083 @default.
- W3178473334 cites W2805781993 @default.
- W3178473334 cites W2884585870 @default.
- W3178473334 cites W2889978276 @default.
- W3178473334 cites W2940314039 @default.
- W3178473334 cites W2944523338 @default.
- W3178473334 cites W2962716958 @default.
- W3178473334 cites W2969034172 @default.
- W3178473334 cites W2970851737 @default.
- W3178473334 cites W2986823971 @default.
- W3178473334 cites W2990045899 @default.
- W3178473334 cites W3000577085 @default.
- W3178473334 cites W3003720578 @default.
- W3178473334 cites W3049460872 @default.
- W3178473334 cites W3094172275 @default.
- W3178473334 cites W3124823188 @default.
- W3178473334 cites W4210257598 @default.
- W3178473334 doi "https://doi.org/10.1016/j.neucom.2021.07.017" @default.
- W3178473334 hasPublicationYear "2021" @default.
- W3178473334 type Work @default.
- W3178473334 sameAs 3178473334 @default.
- W3178473334 citedByCount "9" @default.
- W3178473334 countsByYear W31784733342022 @default.
- W3178473334 countsByYear W31784733342023 @default.
- W3178473334 crossrefType "journal-article" @default.
- W3178473334 hasAuthorship W3178473334A5001167901 @default.
- W3178473334 hasAuthorship W3178473334A5015613049 @default.
- W3178473334 hasAuthorship W3178473334A5023363049 @default.
- W3178473334 hasAuthorship W3178473334A5052689516 @default.
- W3178473334 hasConcept C108583219 @default.
- W3178473334 hasConcept C132525143 @default.
- W3178473334 hasConcept C153180895 @default.
- W3178473334 hasConcept C154945302 @default.
- W3178473334 hasConcept C195704467 @default.
- W3178473334 hasConcept C2781122975 @default.
- W3178473334 hasConcept C41008148 @default.
- W3178473334 hasConcept C80444323 @default.
- W3178473334 hasConcept C81363708 @default.
- W3178473334 hasConcept C97931131 @default.
- W3178473334 hasConceptScore W3178473334C108583219 @default.
- W3178473334 hasConceptScore W3178473334C132525143 @default.
- W3178473334 hasConceptScore W3178473334C153180895 @default.
- W3178473334 hasConceptScore W3178473334C154945302 @default.
- W3178473334 hasConceptScore W3178473334C195704467 @default.
- W3178473334 hasConceptScore W3178473334C2781122975 @default.
- W3178473334 hasConceptScore W3178473334C41008148 @default.
- W3178473334 hasConceptScore W3178473334C80444323 @default.
- W3178473334 hasConceptScore W3178473334C81363708 @default.
- W3178473334 hasConceptScore W3178473334C97931131 @default.
- W3178473334 hasFunder F4320322725 @default.
- W3178473334 hasLocation W31784733341 @default.
- W3178473334 hasOpenAccess W3178473334 @default.
- W3178473334 hasPrimaryLocation W31784733341 @default.
- W3178473334 hasRelatedWork W1604550738 @default.
- W3178473334 hasRelatedWork W2285052147 @default.
- W3178473334 hasRelatedWork W2551059751 @default.
- W3178473334 hasRelatedWork W2738221750 @default.
- W3178473334 hasRelatedWork W2982947611 @default.
- W3178473334 hasRelatedWork W3001589575 @default.
- W3178473334 hasRelatedWork W3156786002 @default.
- W3178473334 hasRelatedWork W3180630304 @default.
- W3178473334 hasRelatedWork W4319994054 @default.
- W3178473334 hasRelatedWork W564581980 @default.
- W3178473334 hasVolume "462" @default.
- W3178473334 isParatext "false" @default.
- W3178473334 isRetracted "false" @default.
- W3178473334 magId "3178473334" @default.
- W3178473334 workType "article" @default.